首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   51篇
  国内免费   16篇
电工技术   2篇
综合类   1篇
化学工业   217篇
金属工艺   16篇
机械仪表   17篇
建筑科学   7篇
轻工业   19篇
无线电   53篇
一般工业技术   48篇
冶金工业   6篇
原子能技术   7篇
自动化技术   10篇
  2024年   1篇
  2023年   12篇
  2022年   10篇
  2021年   126篇
  2020年   24篇
  2019年   23篇
  2018年   19篇
  2017年   10篇
  2016年   24篇
  2015年   26篇
  2014年   28篇
  2013年   22篇
  2012年   21篇
  2011年   17篇
  2010年   5篇
  2009年   3篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1983年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
1.
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.  相似文献   
2.
目的 :分析单纯化疗与博守联合化疗对实体瘤骨转移引起疼痛治疗的效果。方法 :42例病人随机分为单纯化疗组和化疗联合博宁组 ,对疼痛缓解程度和活动能力改善等进行对照研究。结果 :化疗联合应用博宁组疼痛缓解率及肿瘤变化方面明显优于单纯联合化疗组 (P <0 .0 5 ) ,而在活动能力改善方面则无明显差别。结论 :博宁联合化疗治疗骨转移癌引起的疼痛效果优于单纯联合化疗  相似文献   
3.
Rareearthshaveledtowidespreadinterestsinlifescience ,whilethescientistsdoresearchesdeeplyinmedicalandbiochemicalfields .Rareearthsplaypotentialrolesininhibitingcancer ,andalargenum berofscientistsdedicatethemselvestoit[1] .Thema trixmetalloproteinases (MMPs)areafamilyofatleast1 7humanzinc dependentendopeptidasesthatareca pableofdegradingalmostallextracellularmatrix(ECM)components .Theyareessentialinmanyphys iologicalprocessesandseveralpathologicalconditions ,suchastumorprogression .MMPsare…  相似文献   
4.
Prostate cancer (PCa) mortality remains a significant public health problem, as advanced disease has poor survivability due to the development of resistance in response to both standard and novel therapeutic interventions. Therapeutic resistance is a multifaceted problem involving the interplay of a number of biological mechanisms including genetic, signaling, and phenotypic alterations, compounded by the contributions of a tumor microenvironment that supports tumor growth, invasiveness, and metastasis. The androgen receptor (AR) is a primary regulator of prostate cell growth, response and maintenance, and the target of most standard PCa therapies designed to inhibit AR from interacting with androgens, its native ligands. As such, AR remains the main driver of therapeutic response in patients with metastatic castration-resistant prostate cancer (mCRPC). While androgen deprivation therapy (ADT), in combination with microtubule-targeting taxane chemotherapy, offers survival benefits in patients with mCRPC, therapeutic resistance invariably develops, leading to lethal disease. Understanding the mechanisms underlying resistance is critical to improving therapeutic outcomes and also to the development of biomarker signatures of predictive value. The interconversions between epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) navigate the prostate tumor therapeutic response, and provide a novel targeting platform in overcoming therapeutic resistance. Both microRNA (miRNA)- and long non-coding RNA (lncRNA)-mediated mechanisms have been associated with epigenetic changes in prostate cancer. This review discusses the current evidence-based knowledge of the role of the phenotypic transitions and novel molecular determinants (non-coding RNAs) as contributors to the emergence of therapeutic resistance and metastasis and their integrated predictive value in prostate cancer progression to advanced disease.  相似文献   
5.
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.  相似文献   
6.
Metastasis is the process whereby cancer cells migrate from the primary tumour site to colonise the surrounding or distant tissue or organ. Metastasis is the primary cause of cancer-related mortality and approximately half of all cancer patients present at diagnosis with some form of metastasis. Consequently, there is a clear need to better understand metastasis in order to develop new tools to combat this process. MicroRNAs (miRNAs) regulate gene expression and play an important role in cancer development and progression including in the metastatic process. Particularly important are the roles that miRNAs play in the interaction between tumour cells and non-tumoral cells of the tumour microenvironment (TME), a process mediated largely by circulating miRNAs contained primarily in extracellular vesicles (EVs). In this review, we outline the accumulating evidence for the importance of miRNAs in the communication between tumour cells and the cells of the TME in the context of the pre-metastatic and metastatic niche.  相似文献   
7.
8.
As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+)‐organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image‐guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.  相似文献   
9.
Epithelial to mesenchymal transition (EMT) is a process involved in embryonic development, but it also plays a role in remote metastasis formation in tumor diseases. During this process cells lose their epithelial features and adopt characteristics of mesenchymal cells. Thereby single tumor cells, which dissolve from the primary tumor, are enabled to invade the blood vessels and travel throughout the body as so called “circulating tumor cells” (CTCs). After leaving the blood stream the reverse process of EMT, the mesenchymal to epithelial transition (MET) helps the cells to seed in different tissues, thereby generating the bud of metastasis formation. As metastasis is the main reason for tumor-associated death, CTCs and the EMT process are in the focus of research in recent years. This review summarizes what was already found out about the molecular mechanisms driving EMT, the consequences of EMT for tumor cell detection, and suitable markers for the detection of CTCs which underwent EMT. The research work done in this field could open new roads towards combating cancer.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号