首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   3篇
  国内免费   4篇
电工技术   3篇
综合类   3篇
化学工业   11篇
金属工艺   114篇
机械仪表   17篇
能源动力   3篇
石油天然气   1篇
无线电   1篇
一般工业技术   53篇
冶金工业   5篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2015年   3篇
  2014年   12篇
  2013年   15篇
  2012年   16篇
  2011年   16篇
  2010年   11篇
  2009年   18篇
  2008年   17篇
  2007年   13篇
  2006年   19篇
  2005年   23篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   8篇
  2000年   1篇
  1999年   1篇
  1996年   5篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
181.
In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.  相似文献   
182.
采用磁控溅射方法在钛合金(Ti6A14V)基体上制备了HA( YSZ)复合涂层.利用X射线衍射仪(XRD)分析涂层的物相组成,扫描电镜(SEM)观察涂层的表面形貌,原子力显微镜(AFM)分析涂层的生长状况,划痕法测定涂层与基体的附着力.结果表明,用磁控溅射法可在Ti6Al4V基体上制备HA( YSZ)复合涂层,涂层组成与靶材基本相似,涂层呈多孔状,划痕法测量涂层的附着力约为80N,涂层的生长模式为层状生长加岛状生长.  相似文献   
183.
对于生物医用材料Ti6A14V,利用表面改性技术涂覆生物活性陶瓷羟基磷灰石(HA)涂层不仅可以保留钛合金优良的力学性能,还能提高其表面的稳定性和耐磨性,同时提高其生物活性,使新骨直接沉积于Ti6A14V表面,而无纤维结缔组织的中间隔层,从而促进缺损骨的修复,甚至引导新生骨的生长。因此该材料已成为当前人工骨种植体研究的热点之一。本文综述了该材料的制备技术及进展,并分析了各种制备方法的优缺点。  相似文献   
184.
本文介绍了铝土矿PLC控制系统和自动化通信网络,叙述了系统的组成、原理、特点与功能,总结了PLC控制的效果。  相似文献   
185.
以氧氯化锆(ZrOCl2·8H2O)为反应物,采用熔体反应法,并在反应过程中施加脉冲涡流磁场,磁化学合成了(Al2O3+Al3Zr)p/Al复合材料.扫描电镜(SEM)与X射线衍射(XRD)分析表明生成的颗粒为α-Al2O3和Al3Zr,颗粒细小,形状一致,且弥散分布于铝基体中;在相同反应条件下,与常规原位反应相比,磁场下反应更快、更完全,缩短了反应时间,并从反应动力学角度进行了分析.复合材料的力学性能研究表明,其屈服强度σs和抗拉强度σb均随颗粒体积分数的增加而升高,延伸率δ先升后降.(Al2O3+Al3Zr)p/Al复合材料的拉伸断口形貌表明,其断裂属塑性断裂.  相似文献   
186.
颗粒增强铝基复合材料的电磁连铸研究   总被引:3,自引:3,他引:3  
用原位反应合成法制备(Al2O3 Al3Zr)p/Al颗粒增强铝基复合材料,在半连铸过程施加低频交变电磁场进行搅拌,改善增强颗粒在基体内的分布状态,并在结晶器初始凝固区域施加高频电磁场实现软接触连铸以改善铸坯的表面质量.SEM分析显示:施加电磁搅拌后凝固组织致密,颗粒增强相的数量增加,颗粒细化、分布趋于均匀.施加的高频磁场使得单纯使用电磁搅拌产生的表面粗糙现象消失,铸坯表面质量显著改善.  相似文献   
187.
高频脉冲磁场下原位合成(Al3Zr+Al2O3)p/Al复合材料   总被引:3,自引:3,他引:3  
在高频磁场中施加脉冲信号,产生脉冲涡流磁场,感应线圈内部磁场分布趋向均匀,并在熔体内出现一定强度的振荡和扰动现象.该外场作用下选用Al-Zr(CO3)2作为反应组元通过熔体直接反应法原位合成了Al3Zr、Al2O3增强颗粒铝基复合材料,粒度2~3μm,颗粒在基体中弥散均匀分布.热力学和动力学分析表明:脉冲涡流磁场促进了传热传质和扩散过程,改善了原位合成过程动力学条件.  相似文献   
188.
开发了Al-Zr(CO3)2原位反应新体系,采用熔体反应法成功制备了颗粒增强铝基复合材料.X射线衍射(XRD)及扫描电镜(SEM)分析可知,该体系生成的复合材料增强相颗粒细小(≤2 μm)、形状圆整、弥散分布于基体中.反应热力学和动力学分析结果表明,反应起始温度和反应时间是影响反应和扩散的重要因素:反应起始温度越高,反应时间越长,越有利于反应的进行和颗粒的扩散;但随温度的升高和时间的延长,颗粒有长大的倾向.  相似文献   
189.
Al-Zr(CO3)2体系反应合成复合材料的反应机制及动力学模型   总被引:1,自引:1,他引:1  
开发了Al-Zr(CO3)2体系熔体反应法合成新型(Al3Zr Al2O3)p/Al复合材料,研究了Al-Zr(CO3)2体系的反应热力学、反应动力学及反应机制.结果表明:Al-Zr(CO3)2体系起始反应温度为850℃,且在铝熔体(850~1100℃)温度范围内反应能自发进行.X射线衍射(XRD)及扫描电镜(SEM)分析表明:反应合成的强化相为Al3Zr和α-Al2O3颗粒,其尺寸为0.1~1 μm,且在基体中弥散分布.反应过程中复合熔体水淬实验分析表明:反应析出的Zr量随反应时间延长而增大,当反应进行10 min就达到了总增量的90%,整个合成反应时间为15 min,且合成过程前期(反应3 min前)主要受化学反应控制,合成过程后期(反应10 min后)主要受扩散控制.Al-Zr(CO3)2体系中关键反应ZrO2与Al按反应-扩散-破裂机制进行,并建立了反应原理图、反应动力学模型和反应时间的动力学方程.  相似文献   
190.
1 INTRODUCTIONRecently ,muchattentionhasbeen paidtothedevelopmentofeffectivefabricationprocessesforpar ticulatereinforcedmetalmatrixcomposites (PRMM Cs) [13] .However,metalmatricesreinforcedwithparticlesformedinsituareanemerginggroupofdis continuouslyreinforcedcompositesthathavedistinctadvantagesovertheconventionalcomposites[4 ,5] .Inthein situfabricationprocess ,thespontaneousreac tionbetweenthereactantsisutilizedtosynthesizethereinforcementsinthemetalmatrix .Especially ,thedirectmelt…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号