首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350796篇
  免费   28270篇
  国内免费   15258篇
电工技术   19822篇
技术理论   36篇
综合类   23884篇
化学工业   58310篇
金属工艺   20257篇
机械仪表   22350篇
建筑科学   27823篇
矿业工程   11224篇
能源动力   9612篇
轻工业   24742篇
水利工程   6631篇
石油天然气   22490篇
武器工业   2920篇
无线电   38444篇
一般工业技术   40078篇
冶金工业   16901篇
原子能技术   3636篇
自动化技术   45164篇
  2024年   1017篇
  2023年   5454篇
  2022年   8796篇
  2021年   13878篇
  2020年   10692篇
  2019年   8737篇
  2018年   9867篇
  2017年   11194篇
  2016年   9812篇
  2015年   14118篇
  2014年   17556篇
  2013年   21018篇
  2012年   23182篇
  2011年   25249篇
  2010年   21998篇
  2009年   20679篇
  2008年   20249篇
  2007年   19516篇
  2006年   19865篇
  2005年   17213篇
  2004年   11226篇
  2003年   9707篇
  2002年   9166篇
  2001年   8056篇
  2000年   8099篇
  1999年   9237篇
  1998年   7187篇
  1997年   6079篇
  1996年   5690篇
  1995年   4660篇
  1994年   3861篇
  1993年   2710篇
  1992年   2225篇
  1991年   1645篇
  1990年   1195篇
  1989年   953篇
  1988年   761篇
  1987年   508篇
  1986年   373篇
  1985年   240篇
  1984年   169篇
  1983年   110篇
  1982年   137篇
  1981年   93篇
  1980年   85篇
  1979年   33篇
  1978年   3篇
  1965年   2篇
  1959年   7篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
32.
33.
34.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
35.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
36.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
37.
Femtosecond (fs) lasers have been proved to be reliable tools for high-precision and high-quality micromachining of ceramic materials. Nevertheless, fs laser processing using a single-mode beam with a Gaussian intensity distribution is difficult to obtain large-area flat and uniform processed surfaces. In this study, we utilize a customized diffractive optical element (DOE) to redistribute the laser pulse energy from Gaussian to square-shaped Flat-Top profile to realize centimeter-scale low-damage micromachining on single-crystal 4H–SiC substrates. We systematically investigated the effects of processing parameters on the changes in surface morphology and composition, and an optimal processing strategy was provided. Mechanisms of the formation of surface nanoparticles and the removal of surface micro-burrs were discussed. We also examined the distribution of subsurface defects caused by fs laser processing by removing a thin surface layer with a certain depth through chemical mechanical polishing (CMP). Our results show that laser-induced periodic surface structures (LIPSSs) covered by fine SiO2 nanoparticles form on the fs laser-processed areas. Under optimal parameters, the redeposition of SiO2 nanoparticles can be minimized, and the surface roughness Sa of processed areas reaches 120 ± 8 nm after the removal of a 10 μm thick surface layer. After the laser processing, micro-burrs on original surfaces are effectively removed, and thus the average profile roughness Rz of 2 mm long surface profiles decreases from 920 ± 120 nm to 286 ± 90 nm. No visible micro-pits can be found after removing ~1 μm thick surface layer from the laser-processed substrates.  相似文献   
38.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
39.
Abnormal levels of glutathione, a cellular antioxidant, can lead to a variety of diseases. We have constructed a near-infrared ratiometric fluorescent probe to detect glutathione concentrations in biological samples. The probe consists of a coumarin donor, which is connected through a disulfide-tethered linker to a rhodamine acceptor. Under the excitation of the coumarin donor at 405 nm, the probe shows weak visible fluorescence of the coumarin donor at 470 nm and strong near-infrared fluorescence of the rhodamine acceptor at 652 nm due to efficient Forster resonance energy transfer (FRET) from the donor to the acceptor. Glutathione breaks the disulfide bond through reduction, which results in a dramatic increase in coumarin fluorescence and a corresponding decrease in rhodamine fluorescence. The probe possesses excellent cell permeability, biocompatibility, and good ratiometric fluorescence responses to glutathione and cysteine with a self-calibration capability. The probe was utilized to ratiometrically visualize glutathione concentration alterations in HeLa cells and Drosophila melanogaster larvae.  相似文献   
40.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号