首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270214篇
  免费   25244篇
  国内免费   14680篇
电工技术   18844篇
技术理论   16篇
综合类   19553篇
化学工业   41556篇
金属工艺   15991篇
机械仪表   17926篇
建筑科学   21344篇
矿业工程   8439篇
能源动力   8184篇
轻工业   18734篇
水利工程   5739篇
石油天然气   14875篇
武器工业   2647篇
无线电   32579篇
一般工业技术   30619篇
冶金工业   11938篇
原子能技术   3375篇
自动化技术   37779篇
  2024年   914篇
  2023年   4343篇
  2022年   7961篇
  2021年   11676篇
  2020年   8808篇
  2019年   7065篇
  2018年   7889篇
  2017年   8960篇
  2016年   8154篇
  2015年   11403篇
  2014年   14352篇
  2013年   17048篇
  2012年   19307篇
  2011年   20735篇
  2010年   18395篇
  2009年   17443篇
  2008年   17070篇
  2007年   16114篇
  2006年   15756篇
  2005年   13083篇
  2004年   9126篇
  2003年   7579篇
  2002年   7039篇
  2001年   6188篇
  2000年   5540篇
  1999年   5543篇
  1998年   4257篇
  1997年   3615篇
  1996年   3278篇
  1995年   2662篇
  1994年   2132篇
  1993年   1546篇
  1992年   1220篇
  1991年   914篇
  1990年   668篇
  1989年   560篇
  1988年   420篇
  1987年   289篇
  1986年   247篇
  1985年   141篇
  1984年   127篇
  1983年   102篇
  1982年   97篇
  1981年   84篇
  1980年   75篇
  1979年   37篇
  1978年   28篇
  1977年   32篇
  1976年   29篇
  1959年   23篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
11.
12.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
13.
Yarn-dyed fabric is often woven from warp and weft yarns in the same color depth to ensure a uniform color appearance. The difference in color depth between warp and weft tends to result in the uneven color of the yarn-dyed fabric. This article aims to establish a color tolerance for yarn-dyed fabric that can be woven with a qualified color appearance but from the warp and weft yarns in different color depths. A total of 27 yarn-dyed fabric samples in three color series (red, yellow, and blue) were evaluated by using the yarn-dyed fabric from warp and weft yarns in the same color depth of 2% (on weight of fabric, owf) as the standard. Visual assessment and instrumental measurement of color were carried out to establish the color tolerance ellipse that was defined as CMC (Color Measurement Committee) color differences (2:1) of no more than 1.00. It was found that the color strengths (K/S) and color differences (ΔECMC(2:1)) of these fabric samples for each color series had linear relationships with the color depths of warp and weft yarns. The color tolerance ellipses indicated that, even though the warp and weft yarns had an apparent color difference, they could be woven in fabrics with relatively uniform color appearance and meet the requirements for yarn-dyed fabric. This work provided valuable insight into the production of qualified yarn-dyed fabrics from unqualified dyed yarns.  相似文献   
14.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
15.
16.
17.
Sun  Junli  Wang  Huaibin  Li  Yang  Zhao  Min 《Journal of Porous Materials》2021,28(3):889-894
Journal of Porous Materials - Co3O4 has been widely investigated as a promising candidate anode material for lithium-ion batteries. We report on the porous Co3O4 column synthesized via a simple...  相似文献   
18.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
19.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
20.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号