首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   6篇
电工技术   10篇
化学工业   86篇
金属工艺   21篇
机械仪表   18篇
建筑科学   7篇
能源动力   15篇
轻工业   59篇
水利工程   1篇
石油天然气   4篇
无线电   25篇
一般工业技术   60篇
冶金工业   79篇
原子能技术   16篇
自动化技术   14篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   8篇
  2013年   20篇
  2012年   19篇
  2011年   23篇
  2010年   19篇
  2009年   15篇
  2008年   29篇
  2007年   18篇
  2006年   12篇
  2005年   16篇
  2004年   16篇
  2003年   13篇
  2002年   11篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   24篇
  1997年   21篇
  1996年   12篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   7篇
  1979年   1篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
411.
Introduction The elbow is one of the important elements used in pipe lines, and it is very important to clarify the propagating phenomena of shock waves through the elbow for engineering applications. Although some investigations of the propagating shock in the single and double elbows have been carried out[1?The working gas is air. The numbers of the grid in the computational domain are 251·(a) Type 4-1 (b) Type 4-2 Fig.3 Pressure distributions on each wall the merging with the 2nd shock…  相似文献   
412.
Thermal decomposition and the burning properties of fluorocarbon/boron/AP propellant granule have been investigated. The fluoro-carbon binder (FBDR) was oxidized by the decomposition products of admixed ammonium perchlorate (AP) and its decomposition region was 150°C lowered in the slow thermolysis. The boron particles, however reacted with neither FBDR nor AP at 550°C. In the micro-motor tests, the boron particles completely burnt at a pressure range of from 30 MPa to 80 MPa in a short period of time (one millisecond) even at a low characteristic exhaust velocity. Minimum free volume, however, was needed to complete the combustion reaction in the chamber case. The characteristic exhaust velocity significantly decreased at below the characteristic chamber length of 11 cm. The boronized propellant showed low temperature sensitivity between −30°C and 60°C.  相似文献   
413.
Because of the formation of a surface passive film (rutile TiO2) on its surface layer, titanium metal shows adequate corrosion resistance. As the surface layer (passive film) of titanium metal is very stable, any functionalization of the titanium metal has been generally performed using relatively complicated methods. This is because any direct oxidation of titanium metal only leads to the formation of rutile TiO2 over the entire temperature range. Chemical reactions using titanium chemicals can easily produce anatase TiO2 at temperatures of ≤600°C. Using precursors is one of the ways of producing an anatase TiO2 coating on titanium metal. However, in previous studies, anatase TiO2 layers easily peeled off when they were used in flowing water. Herein, we describe a simple process for obtaining an anatase TiO2 coating layer strongly bonded to the titanium metal surface. In our process, titanium metal was pretreated with a reducing agent to create a surface TiH2 layer, whose condensation reaction easily proceeds with a precursor (composed of oxalic acid and tetra-butoxy titanium). Subsequently, the treated titanium metal was calcinated at 550°C in air to achieve strong bonding between the anatase TiO2 coating layer and titanium metal surface. The treated titanium metal exhibited excellent photocatalytic activity.  相似文献   
414.
Surface functionalization of titanium metal is very attractive for bio- and environmental applications. This is because titanium metal is very stable and has a good biocompatibility. In this case, surface roughness and crystalline structure are important factors for obtaining effective characteristics. Titanium metal is usually covered with a surface passive film of thermodynamically stable rutile-TiO2 that grows as the heat treatment temperature in air increases. On the other hand, to obtain an anatase-TiO2 surface layer on titanium metal, we must employ specific treatments such as our previous method, which uses a silica-coexisting heat-treatment process. In this paper, the relationship between the fine structure formed on the titanium metal and the surface hydrophilic property was clarified, and the potential for the bio-application was discussed. The formed anatase-TiO2 coexisting with silica exhibited improved biocompatibility with good apatite formation.  相似文献   
415.
This paper provides an innovative controlling process of surface morphology. The contact area between a liquid and a solid is strongly affected by the critical surface tension (cft) of both materials. Using this phenomenon, a wide range of morphologies, from flat surface layers to sea-grape-like surface structures, were created. Due to the bleed-out phenomenon, low-molecular-mass additive (liquid) oozed out of a precursor polymer (solid), leading to different surface morphologies depending on the cft values of the liquid (Mcft) and solid (Pcft). When Mcft < < Pcft, a flat surface layer was obtained; however, in the case of Pcft < < Mcft, the formation of a sea-grape-like surface layer was created. Tetra-butoxy-titanium and polydimethylsiloxane were used as low-molecular-mass additive and precursor polymer, respectively. After coating on titanium metal and calcination, sea-grape-like materials composed of titanium oxide and silicon oxide were obtained. Furthermore, unique characteristics (bioactivity, photocatalytic activity, and prevention of atomic diffusion) were observed. A remarkable increase in the wettability, bioactivity, and catalytic activity of materials was achieved using our simple process to create unique surface morphologies. Our proposed process is applicable to a wide range of materials and morphologies, and can be used in catalysts, biomaterials, and environmental barrier coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号