首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   5篇
  国内免费   2篇
电工技术   17篇
化学工业   27篇
金属工艺   13篇
机械仪表   4篇
能源动力   4篇
轻工业   39篇
无线电   9篇
一般工业技术   38篇
冶金工业   7篇
原子能技术   2篇
自动化技术   5篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   13篇
  2013年   16篇
  2012年   10篇
  2011年   20篇
  2010年   6篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   10篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1976年   1篇
排序方式: 共有165条查询结果,搜索用时 250 毫秒
11.
We developed an interdigitated array electrode (IDAE) consisting of a metal oxide electrode and a metal band heteroelectrode and employed it for the selective detection of catecholamines. We used an indium-tin oxide (ITO) film as the oxidation electrode of the IDAE because the ITO was able to suppress response currents from L-ascorbic acid (AA) and uric acid (UA), which are major electroactive interferents in biological fluids. However, the ITO film also suppresses the reduction of quinones including oxidized catecholamines. We developed a simple technique for fabricating our hetero IDAE, which also preserves the electrochemical properties of the ITO. When we compared hetero ITO-gold, homo ITO-ITO, and carbon-carbon IDAEs, we found that the hetero IDAE provided both high sensitivity and selectivity for DA detection. We achieved high selectivities for DA against AA and UA. The ratios of the response currents of AA and UA to DA were calculated as 6 and 5%, respectively.  相似文献   
12.
We developed a fully automated electrophoresis system for rapid and highly reproducible protein analysis. All the two-dimensional (2D) electrophoresis procedures including isoelectric focusing (IEF), on-part protein staining, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and in situ protein detection were automatically completed. The system comprised Peltiert devices, high-voltage generating devices, electrodes, and three disposable polymethylmethacrylate (PMMA) parts for IEF, reaction chambers, and SDS-PAGE. Because of miniaturization of the IEF part, rapid IEF was achieved in 30 min. A gel with a tapered edge gel on the SDS-PAGE part realized a connection between the parts without use of a gluing material. A biaxial conveyer was employed for the part relocation, sample introduction, and washing processes to realize a low-maintenance and cost-effective automation system. Performances of the system and a commercial minigel system were compared in terms of detected number, resolution, and reproducibility of the protein spots. The system achieved high-resolution comparable to the minigel system despite shorter focusing time and smaller part dimensions. The resulting reproducibility was better or comparable to the performance of the minigel system. Complete 2D separation was achieved within 1.5 h. The system is practical, portable, and has automation capabilities.  相似文献   
13.
An Nb3Sn superconducting magnet to store 400 kJ was developed as a unit magnet for a 2.4-MJ SMES system used for stabilization studies of electrical power systems. The superconducting magnet consists of a cryostat and an Nb3Sn coil. The dimensions of the coil are: 340 mm inner diameter, 700 mm outer diameter and 177 mm axial length. The pool-cooled coil is a stack of 20 Nb3Sn double pancakes, and the cooling channels are aligned between pancake coils. To reduce Joule loss in electrical power converters, the maximum operating current of the coil is designed to be 350 A, which is one order of magnitude less than the operating currents of similar scale coils for pulse use. The conductor is an Nb3Sn monolithic conductor with cross section 1.50 × 2.38 mm. For good superconducting stability and high dielectric strength of the coil, the Nb3Sn double pancakes were wound by the react-and-wind technique. Operation of dc current to 105% (367.5 A) of the design operating current was achieved without quench. After the whole of the coil was exposed out of liquid helium, the coil did not quench under 120 A current operation for more than 2 hours. It was verified that the coil was stable for the SMES system. © 1998 Scripta Technica, Inc. Electr Eng Jpn, 121(3): 44–52, 1997  相似文献   
14.
15.
Gellan is an anionic extracellular bacterial polysaccharide discovered in 1978. Acyl groups present in the native polymer are removed by alkaline hydrolysis in normal commercial production, giving the charged tetrasaccharide repeating sequence: → 3)-β-d-Glcp-(1 → 4)-β-d-GlcpA-(1 → 4)-β-d-Glcp-(1 → 4)-α-l-Rhap-(1 →. Deacylated gellan converts on cooling from disordered coils to 3-fold double helices. The coil–helix transition temperature (Tm) is raised by salt in the way expected from polyelectrolyte theory: equivalent molar concentrations of different monovalent cations (Group I and Me4N+) cause the same increase in Tm; there is also no selectivity between different divalent (Group II) cations, but divalent cations cause greater elevation of Tm than monovalent. Cations present as counterions to the charged groups of the polymer have the same effect as those introduced by addition of salt. Increasing polymer concentration raises Tm because of the consequent increase in concentration of the counterions, but the concentration of polymer chains themselves does not affect Tm. Gelation occurs by aggregation of double helices. Aggregation stabilises the helices to temperatures higher than those at which they form on cooling, giving thermal hysteresis between gelation and melting. Melting of aggregated and non-aggregated helices can be seen as separate thermal and rheological processes. Reduction in pH promotes aggregation and gelation by decreasing the negative charge on the polymer and thus decreasing electrostatic repulsion between the helices. Group I cations decrease repulsion by binding to the helices in specific coordination sites around the carboxylate groups of the polymer. Strength of binding increases with increasing ionic size (Li+ < Na+ < K+ < Rb+ < Cs+); the extent of aggregation and effectiveness in promoting gel formation increase in the same order. Me4N+ cations, which cannot form coordination complexes, act solely by non-specific screening of electrostatic repulsion, and give gels only at very high concentration (above ∼0.6 M). At low concentrations of monovalent cations, ordered gellan behaves like a normal polymer solution; as salt concentration is increased there is then a region where fluid “weak gels” are formed, before the cation concentration becomes sufficient to give true, self-supporting gels. Aggregation and consequent gelation with Group II cations occurs by direct site-binding of the divalent ions between gellan double helices. High concentrations of salt or acid cause excessive aggregation, with consequent reduction in gel strength. Maximum strength with divalent cations comes at about stoichiometric equivalence to the gellan carboxylate groups. Much higher concentrations of monovalent cations are required to attain maximum gel strength. The content of divalent cations in commercial gellan is normally sufficient to give cohesive gels at polymer concentrations down to ∼0.15 wt %. Gellan gels are very brittle, and have excellent flavour release. The networks are dynamic: gellan gels release polymer chains when immersed in water and show substantial recovery from mechanical disruption or expulsion of water by slow compression. High concentrations of sugar (∼70 wt % and above) inhibit aggregation and give sparingly-crosslinked networks which vitrify on cooling. Gellan forms coupled networks with konjac glucomannan and tamarind xyloglucan, phase-separated networks with kappa carrageenan and calcium alginate, interpenetrating networks with agarose and gelling maltodextrin, and complex coacervates with gelatin under acidic conditions. Native gellan carries acetyl and l-glyceryl groups at, respectively, O(6) and O(2) of the 3-linked glucose residue in the tetrasaccharide repeat unit. The presence of these substituents does not change the overall double helix structure, but has profound effects on gelation. l-Glyceryl groups stabilise the double helix by forming additional hydrogen bonds within and between the two strands, giving higher gelation temperatures, but abolish the binding site for metal ions by changing the orientation of the adjacent glucuronate residue and its carboxyl group. The consequent loss of cation-mediated aggregation reduces gel strength and brittleness, and eliminates thermal hysteresis. Aggregation is further inhibited by acetyl groups located on the periphery of the double helix. Gellan with a high content of residual acyl groups is available commercially as “high acyl gellan”. Mixtures of high acyl and deacylated gellan form interpenetrating networks, with no double helices incorporating strands of both types. Gellan has numerous existing and potential practical applications in food, cosmetics, toiletries, pharmaceuticals and microbiology.  相似文献   
16.
Dynamic and steady shear rheometry and differential scanning calorimetry (DSC) were used to investigate effects of xyloglucan (XG) on gelatinization and retrogradation of tapioca starch (TS). The viscosity of TS/XG pastes immediately after gelatinization increased with increasing XG content at the total polysaccharide concentration of 3.5%. Gelatinized TS alone showed pseudoplastic flow at low shear rates and dilatant behavior at higher shear rates (about >1 s−1), while mixtures with XG did not show dilatancy. Mechanical spectra of TS pastes containing XG were more liquid-like than those of TS pastes without XG. XG provides shear stability to the TS during storage. Increases in dynamic moduli during storage at 5 °C were suppressed in the presence of XG. In contrast, the retrogradation ratio determined based on DSC increased more rapidly in the presence of XG. These results suggest that XG forms a continuous liquid phase in a mixture to impart better mechanical stability during storage but to accelerate re-ordering of starch polysaccharides by effectively reducing the amount of water available for starch.  相似文献   
17.
Abstract

PZT capacitor with direct contact between Si substrate and bottom electrode of the capacitor was obtained with Ir/IrO2/Ir/Ti electrode, by crystallizing sol-gel PZT thin film using RTA (650°CC 30 sec.). Contact resistance for hole diameter of 0.72 μm was 19 Ω. It was observed by cross-sectional TEM that Ti silicide was formed at the interface, but there was not oxygen diffusion from PZT thin film. Fatigue property of the PZT thin film was improved by RTA compared with furnace annealed film (600°CC 60 min.). The absolute value of the remnant polarization was 13 μC/cm2 for both films, but it did not degrade until 108 cycles of switching for the film by RTA, while it degraded before 105 cycles for furnace annealed film.  相似文献   
18.
Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1–4 mm length, having fine α-Mg grains and Al2Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg–6%Al–0.5%Mn–2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573–673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45–0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200–500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.  相似文献   
19.
The microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy was investigated. Both rapid solidified powders and cast billets were extruded at 573, 623 and 673 K to optimize the processing conditions for obtaining better mechanical response. Powder was consolidated to prepare the extrusion billets using both cold compaction and Spark Plasma Sintering at 473 K. The tensile properties of the extruded alloy were then evaluated and correlated to the observed microstructure. The results show that the use of rapid solidified powder could lead to effective grain refinement, which in turn resulted in the improved mechanical response, especially compared to the extruded conventional cast material.  相似文献   
20.
The cavitation erosion resistance of P/M aluminum alloy sintered composite with AlN dispersoids, prepared via the in situ synthesis and the conventional premixing process, was evaluated by using a magnetostrictive-vibration type equipment. In situ synthesized AlN particles were effective for the improvement of the erosion resistance of the composite because of their good bonding with the aluminum matrix. The additive AlN by the premixing process were easily detached from the specimen surface due to the insufficient coherence with the matrix, and caused the poor resistance. The cavitation resistance also depended on the porosity of the sintered composite. The continuously opened pores accelerated the wear phenomena by the cavitation due to the high pressure attack on the primary particle boundaries of sintered materials in the collapse of the bubbles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号