首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   18篇
  国内免费   4篇
电工技术   5篇
化学工业   109篇
金属工艺   1篇
机械仪表   3篇
建筑科学   3篇
能源动力   9篇
轻工业   31篇
水利工程   5篇
无线电   21篇
一般工业技术   67篇
冶金工业   18篇
原子能技术   5篇
自动化技术   37篇
  2024年   2篇
  2023年   11篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   11篇
  2018年   16篇
  2017年   15篇
  2016年   9篇
  2015年   5篇
  2014年   12篇
  2013年   37篇
  2012年   14篇
  2011年   24篇
  2010年   6篇
  2009年   14篇
  2008年   13篇
  2007年   8篇
  2006年   10篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1981年   4篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有314条查询结果,搜索用时 174 毫秒
61.
62.
Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most efficient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this review has elucidated the general aspects of DCs as well as the current dynamic perspectives and distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, cat, horse, cattle, sheep, pig, and non-human primates. Besides the role that DCs play in immune response, they also play a pathogenic role in many diseases, thus becoming a target in disease prevention and treatment. In addition, its roles in clinical immunology have also been addressed, which include its involvement in transplantation, autoimmune disease, viral infections, cancer, and as a vaccine target. Therefore, based on the current knowledge and understanding of the important roles they play, DCs can be used in the future as a powerful tool for manipulating the immune system.  相似文献   
63.
The preparation of hollow hydroxyapatite (HA) microspheres as potential drug-delivery vehicles was investigated. A lithium-calcium-borate (10Li2O-15CaO-75B2O3) (mol%) glass, made by fusing the components at 1100°C for 1 h, was ground to a powder and passed through a flame at ∼1400°C to spheroidize the particles. The resulting glass microspheres (106–125 μm in diameter) were reacted in 0.25 M K2HPO4 solution for 5 days at 37°C and pH 10–12, resulting in the formation of porous, hollow microspheres of a calcium phosphate (Ca-P) material with external diameters similar to those of the original glass particles. Heat treatment at 600°C for 4 h partially converted the Ca-P material to HA, as confirmed by X-ray diffraction, and also increased the strength of the hollow microspheres.  相似文献   
64.
Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37°C. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO2 with B2O3. Higher B2O3 content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO2 in a Na-depleted core. The concentration of Na+ in the phosphate solution increased with reaction time whereas the PO43– concentration decreased, both reaching final limiting values at a rate that increased with the B2O3 content of the glass. However, the Ca2+ concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K2HPO4 and K2CO3 produced a carbonate-substituted HA but the presence of the K2CO3 had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.  相似文献   
65.
This article reports the results of studies on the effect of 1-octadecanol (abbreviated as C18) functionalization of carbon nanotubes (CNT) on electrical properties of natural rubber (NR) composites. Dispersion of CNT in NR matrix was studied by transmission electron microscopy (TEM) and electrical resistivity measurements. Fourier transform infra red spectrometry (FTIR) indicates characteristic peaks for ether and hydrocarbon in the case of C18 functionalized CNT. Dielectric constant increases with respect to the filler loading for both unmodified and functionalized CNTs, the effect being less pronounced in the case of functionalized CNT due to its better dispersion in the matrix. Stress–strain plots suggest that the mechanical integrity of the NR/CNT composites, measured in terms of tensile strength, increases on C18 functionalization of the nanofiller. TEM reveals that the functionalization causes improvement in dispersion of CNT in NR matrix, which is corroborated by the increase in electrical resistivity in the case of the functionalized CNT/NR composites.  相似文献   
66.
The conversion of 45S5 glass and glass–ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically <3 months). In this paper, we report for the first time on the long-term conversion of 45S5 glass–ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75–150 μm) were immersed for 10 years at room temperature (~25 °C) in K2HPO4 solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25–45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K2HPO4 concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K2HPO4 solution but a calcium pyrophosphate product, Ca10K4(P2O7)6.9H2O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass–ceramics in biomedical applications are discussed.  相似文献   
67.
Interaction between beta-lactum antibiotic drug ciprofloxacin hydrochloride(CFH)and cationic surfactant cetyltrimethylammonium bromide(CTAB)was performed conductometrically in aqueous as well as in the occurrence of different salts(NaCl,KCl as well as NH_4Cl)over the temperature range of 298.15–323.15 K at the regular interval of 5 K.CFH drug has been suggested for the treatment of bacterial infections such as urinary tract infections and acute sinusitis.A clear critical micelle concentration(CMC)was obtained for pure CTAB as well as(CFH+CTAB)mixed systems.The decrease in CMC values of CTAB caused by the addition of CFH reveals the existence of the interaction between the components and therefore it is the indication of micelle formation at lower concentration of CTAB and their CMC values further decrease in attendance of salts.A nonlinear behavior in the CMC versus T plot was observed in all the cases.The ΔG_m~0 values are found to be negative in present study systems demonstrated the stability of the solution.The values of ΔH_m~0 and ΔS_m~0 reveal the existence of hydrophobic and electrostatic interactions between CFH and CTAB.The thermodynamic properties of transfer for the micellization were also evaluated and discussed in detail.Molecular dynamic simulation disclosed that environment of water and salts have impact on the hydrophobic interaction between CFH and CTAB.In water and salts,CTAB adopts spherical micelle in which charged hydrophilic groups are interacted with waters whereas hydrophobic tails form the core of the micelle.This hydrophobic core region is highly conserved and protected.In addition,micelle formation is more favorable in aqueous Na Cl solution than other solutions.  相似文献   
68.
IFMIF (International Fusion Materials Irradiation Facility) will be a fusion dedicated facility producing a large amount of neutrons with the appropriate energy spectrum to test materials and subcomponents for DEMO and future Fusion Power Plants.While the high flux area of IFMIF will be devoted to reduced activation structural materials for first wall and blanket, the medium flux area will be dedicated to functional materials for breeder blankets. In particular, the Liquid Breeder Validation Module (LBVM), will host experiments related with functional materials for liquid breeder blankets. Since IFMIF neutron spectra have been intended to fit the most irradiated areas of a fusion reactor in the high flux area, the irradiation conditions in the LBVM placed in the medium flux area of IFMIF have been assessed. The effect of some neutron shifter/reflector components to optimize the neutron spectra have been evaluated in order to find out the proper irradiation conditions for functional materials for liquid breeder blankets.Therefore, the objective of this report is to summarize the neutronic calculations developed to evaluate the viability of IFMIF neutron source to perform relevant irradiation experiments on functional materials for liquid breeder blanket concept for future nuclear fusion power reactors (ITER, DEMO). The irradiation parameters evaluated for this purpose are: the tritium production for liquid breeder material (Pb–17Li) and the damage dose (dpa) and gas production to damage dose ratios for Al2O3 and SiC functional materials.The main conclusion is that, it is possible to perform relevant irradiation experiments on functional materials for liquid breeder blanket concept for the future nuclear fusion reactor DEMO. Nevertless, the use of some shifter components will be needed to optimize some irradiation parameters.  相似文献   
69.
An optimal implementation of 128-Pt FFT/IFFT for low power IEEE 802.15.3a WPAN using pseudo-parallel datapath structure is presented, where the 128-Pt FFT is devolved into 8-Pt and 16-Pt FFTs and then once again by devolving the 16-Pt FFT into 4×4 and 2×8. We analyze 128-Pt FFT/IFFT architecture for various pseudo-parallel 8-Pt and 16-Pt FFTs and an optimum datapath architecture is explored. It is suggested that there exists an optimum degree of parallelism for the given algorithm. The analysis demonstrated that with a modest increase in area one can achieve significant reduction in power. The proposed architectures complete one parallel-to-parallel (i.e., when all input data are available in parallel and all output data are generated in parallel) 128-point FFT computation in less than 312.5 ns and thereby meet the standard specification. The relative merits and demerits of these architectures have been analyzed from the algorithm as well as implementation point of view. Detailed power analysis of each of the architectures with a different number of data paths at block level is described. We found that from power perspective the architecture with eight datapaths is optimum. The core power consumption with optimum case is 60.6 MW which is only less than half of the latest reported 128-point FFT design in 0.18u technology. Furthermore, a Single Event Upset (SEU) tolerant scheme for registers is also explored. The SEU tolerant scheme will not affect the performance, however, there is an increase power consumption of about 42 percent. Apart from the low power consumption, the advantages of the proposed architectures include reduced hardware complexity, regular data flow and simple counter based control.  相似文献   
70.
A simple method for the preparation of magnetic nanocomposites consisting of cobalt ferrite (CF; CoFe2O4) nanoparticles, polybenzoxazine (PB), linear low‐density polyethylene (LLDPE), and linear low‐density polyethylene‐g‐maleic anhydride (LgM) is described. The composites were prepared by the formation of benzoxazine (BA)–CF nanopowders followed by melt blending with LLDPE and the thermal curing of BA. The composites were characterized by X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, universal testing machine measurement, and vibrating sample magnetometry. The composites consisting of LLDPE, PB, and LgM (47.5L–47.5PB–5LgM) exhibited a higher tensile strength (23.82 MPa) than pure LLDPE and a greater elongation at break (6.11%) than pure PB. The tensile strength of the composites decreased from 19.92 to 18.55 MPa with increasing CF loading (from 14.25 to 33.25 wt %). The saturation magnetization of the composites containing 33.25 wt % CF was 18.28 emu/g, and it decreased with decreasing amount of CF in the composite. The composite films exhibited mechanical flexibility and magnetic properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号