首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19755篇
  免费   2790篇
  国内免费   6篇
电工技术   1387篇
综合类   405篇
化学工业   9248篇
金属工艺   323篇
机械仪表   458篇
建筑科学   772篇
矿业工程   179篇
能源动力   219篇
轻工业   1945篇
水利工程   145篇
石油天然气   76篇
无线电   597篇
一般工业技术   3555篇
冶金工业   627篇
原子能技术   41篇
自动化技术   2574篇
  2023年   665篇
  2022年   361篇
  2021年   814篇
  2020年   741篇
  2019年   642篇
  2018年   663篇
  2017年   486篇
  2016年   718篇
  2015年   872篇
  2014年   955篇
  2013年   1618篇
  2012年   734篇
  2011年   670篇
  2010年   953篇
  2009年   1061篇
  2008年   567篇
  2007年   548篇
  2006年   385篇
  2005年   362篇
  2004年   311篇
  2003年   288篇
  2002年   183篇
  2001年   152篇
  1998年   248篇
  1997年   202篇
  1996年   230篇
  1995年   218篇
  1994年   183篇
  1993年   245篇
  1992年   176篇
  1990年   179篇
  1989年   191篇
  1988年   147篇
  1987年   170篇
  1986年   193篇
  1985年   181篇
  1984年   176篇
  1983年   188篇
  1982年   164篇
  1981年   208篇
  1980年   175篇
  1979年   176篇
  1977年   156篇
  1976年   169篇
  1975年   210篇
  1974年   196篇
  1973年   370篇
  1972年   215篇
  1971年   152篇
  1970年   149篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
Combined photochemical arylation, “nuisance effect” (SNAr) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein–ligand structure determination. Reactions were deliberately allowed to run “out of control” in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SNAr processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.  相似文献   
22.
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.  相似文献   
23.
24.
The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the “classical” SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.  相似文献   
25.
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.  相似文献   
26.
When Streptomyces violaceoruber grows together with Streptomyces sp. MG7-G1, it reacts with strongly induced droplet production on its aerial mycelium. Initially the metabolite profile of droplets from S. violaceoruber in co-culture with Streptomyces sp. MG7-G1 was compared to samples from S. violaceoruber in single-culture by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Then, the exudate from agar plates of co-cultures and single cultures (after freezing and thawing) was also analysed. Several compounds were only observed when S. violaceoruber was grown in co-culture. Based on their high-resolution ESI mass spectra and their comparable retention times to the calcium-dependent antibiotics (CDAs) produced by S. violaceoruber, the new compounds were suspected to be deacylated calcium-dependent antibiotics (daCDAs), lacking the 2,3-epoxyhexanoyl residue of CDAs. This was verified by detailed analysis of the MS/MS spectra of the daCDAs in comparison to the CDAs. The major CDA compounds present in calcium ion-supplemented agar medium of co-cultures were daCDAs, thus suggesting that Streptomyces sp. MG7-G1 expresses a deacylase that degrades CDAs.  相似文献   
27.
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.  相似文献   
28.
Potential mGAT4 inhibitors derived from the lead substance (S)-SNAP-5114 have been synthesized and characterized for their inhibitory potency. Variations from the parent compound included the substitution of one of its aromatic 4-methoxy and 4-methoxyphenyl groups, respectively, with a more polar moiety, including a carboxylic acid, alcohol, nitrile, carboxamide, sulfonamide, aldehyde or ketone function, or amino acid partial structures. Furthermore, it was investigated how the substitution of more than one of the aromatic 4-methoxy groups affects the potency and selectivity of the resulting compounds. Among the synthesized test substances (S)-1-{2-[(4-formylphenyl)bis(4-methoxyphenyl)-methoxy]ethyl}piperidine-3-carboxylic acid, that features a carbaldehyde function in place of one of the aromatic 4-methoxy moieties of (S)-SNAP-5114, was found to have a pIC50 value of 5.89±0.07, hence constituting a slightly more potent mGAT4 inhibitor than the parent substance while showing comparable subtype selectivity.  相似文献   
29.
30.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号