首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   743篇
  免费   57篇
  国内免费   9篇
电工技术   17篇
综合类   3篇
化学工业   207篇
金属工艺   22篇
机械仪表   24篇
建筑科学   36篇
矿业工程   1篇
能源动力   55篇
轻工业   48篇
水利工程   6篇
石油天然气   4篇
无线电   65篇
一般工业技术   141篇
冶金工业   24篇
原子能技术   10篇
自动化技术   146篇
  2024年   4篇
  2023年   13篇
  2022年   27篇
  2021年   56篇
  2020年   61篇
  2019年   42篇
  2018年   86篇
  2017年   47篇
  2016年   45篇
  2015年   28篇
  2014年   56篇
  2013年   97篇
  2012年   58篇
  2011年   61篇
  2010年   41篇
  2009年   32篇
  2008年   9篇
  2007年   13篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有809条查询结果,搜索用时 26 毫秒
31.
Despite extensive research on the behavior of unsaturated fine-grained materials, there is still a lack of understanding of the volumetric behavior of unsaturated granular materials. In this research, a model has been developed to predict the fundamental volumetric behavior of unsaturated granular materials through loading and wetting state paths. In this regard, a loading-wetting surface was developed in a space of void ratio-moisture ratio-net stress. A distinctive feature of the proposed model is the relative simplicity in obtaining the model parameters using conventional geotechnical testing equipment. Two types of recycled granular materials, commonly applied in unbound pavements were used, namely, recycled crushed brick (CB) and excavation waste rock (WR). The uniqueness of the developed surface was evaluated by employing a number of loading and wetting state paths. The results indicate that the developed surface is unique in its loading state paths; however, it only shows uniqueness in its wetting state paths for stress levels greater than 2000 kPa. The proposed model seeks to introduce the application of the unsaturated soil mechanics theory, for predicting the behavior of granular materials in the field, by providing a practical and cost-effective methodology.  相似文献   
32.
Wireless Personal Communications - A novel design of double-layer dual-band circularly polarized array antennas (DDCPAAs) is presented in this paper. First, a DDCP single antenna is introduced as...  相似文献   
33.
Nanoscience and technology (NST) is a relatively new interdisciplinary scientific domain, and scholars from a broad range of different disciplines are contributing to it. However, there is an ambiguity in its structure and in the extent of multidisciplinary scientific collaboration of NST. This paper investigates the multidisciplinary patterns of Iranian research in NST based on a selection of 1,120 ISI??indexed articles published during 1974?C2007. Using text mining techniques, 96 terms were identified as the main terms of the Iranian publications in NST. Then the scientific structure of the Iranian NST was mapped through multidimensional scaling, based upon the co-occurrence of the main terms in the academic publications. The results showed that the NST domain in Iranian publications has a multidisciplinary structure which is composed of different fields, such as pure physics, analytical chemistry, chemistry physics, material science and engineering, polymer science, biochemistry and new emerging topics.  相似文献   
34.
This paper presents a novel approach for estimating the distribution of the incoming waves at the mobile unit antenna, i.e. the scattering distribution, in a typical micro-cellular system. This estimate is vital in determining many system parameters of interest as well as designing unbiased estimators for the velocity of mobile units in micro-cellular systems. The proposed approach deploys the zero-crossing rates of the quadrature components and the instantaneous frequency of the received signal at the mobile unit to estimate the scattering distribution. We also propose a new model for simulating multipath fading channels with non-isotropic scattering. We use the channel simulator to evaluate the performance of the proposed estimator for the scattering distribution. Simulation results show that proposed estimator exhibits small bias and root mean square error.  相似文献   
35.
Bioenergy is considered as a sustainable energy which can play a significant role in the future’s energy scenarios to replace fossil fuels, not only in the heat production, but also in the electricity and transportation sectors. Emission formation and release of main ash-forming elements during thermal conversion of biomass fuels at different conditions have been the scope of this study. The experiments were conducted in a quartz glass reactor where the temperature and atmosphere could be controlled. The selected fuels represent a wide range of biomass compositions. They are torrefied softwood, spruce bark, waste wood, miscanthus, and wheat straw. The fuels were first grinded and then pressed with a pellet maker into pellets of the same size and weight. For each fuel, the experiments were carried out under both oxidation and pyrolysis condition, with atmosphere of 3 % O2 + 97 % N2 and 100 % N2, respectively, at four residence times. The selected temperatures under which experiments were performed are 800, 900, and 1,050 °C. The concentration of SO2, NO, CO, and CO2 emissions and O2 were monitored online by three analysers, simultaneously. The residue weight was measured after each process, and the comparison with the ash content of the fresh pellet is made. Additionally, the release of several ash-forming elements (K, Zn, Na, and Mn) from the fuels has been quantified as function of temperature and residence time by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Time-dependent formation of NO and SO2 and other emissions is presented and discussed with respect to different temperature and combustion conditions.  相似文献   
36.
Safety systems, built on state-of-the-art technology, are essential for achieving acceptable levels of plant safety to minimize hazards to the reactor and the general public. The second shutdown system(SSS) as an engineered safety feature and a part of the reactor protection system(RPS) is a means for rapidly shutting down a nuclear reactor, keeping it in a subcritical state and serving as a backup to the first shutdown system(FSS). In this research, one SSS with two types of optimum chamber designs is proposed that take into account the main current characteristic features of the Tehran research reactor with improvements over earlier designs. They are based on a liquid neutron absorber injection that is preferably different, diverse, and independent from the FSS based on the rod drop mechanism. The major design characteristics of this SSS with two different chambers were investigated using MCNPX 2.6.0 code. The performed calculations showed that the designed SSS is a reliable shutdown system, assuring an appropriate shutdown margin and injection time, with no significant effects on the effective delayed neutron fraction while causing minimal variations to the core structure. Further, the reasonable financial cost and the prolongation of the operation cycle are additional advantages of this design.  相似文献   
37.
In the present work, rarefied gas flow between two parallel moving plates maintained at the same uniform temperature is simulated using the direct simulation Monte Carlo (DSMC) method. Heat transfer and shear stress behavior in the micro/nano-Couette flow is studied and the effects of the important molecular structural parameters such as molecular diameter, mass, degrees of freedom and viscosity–temperature index on the macroscopic behavior of gases are investigated. Velocity, temperature, heat flux and shear stress in the domain are studied in details. Finally, a discussion on the role of the molecular structural parameters in the decrease or increase of amounts of hydrodynamics and thermal properties of the gas is presented.  相似文献   
38.
We use numerical linked-cluster expansions to study finite-temperature properties of strongly interacting fermions in two-dimensional optical lattices, governed by the Hubbard model. We show the double occupancy and entropy for the infinite homogeneous system at temperatures significantly lower than those obtained by other exact methods at strong interactions. Employing a local density approximation, and using the high-precision results for the entropy, we study the density and nearest-neighbor spin correlation profiles of lattice fermions trapped in a harmonic potential during adiabatic processes. Starting with a trap that has a substantial band-insulator region at high temperatures, we show how one can access the Mott region at low temperatures by flattening the trapping potential.  相似文献   
39.
In this study, the operating conditions of an axial flow spherical reactor have been optimised using a reliable optimisation technique and the results are compared with the results of non‐optimised conditions. The dynamic behaviour of the reactor has been considered in the optimisation process and orthogonal collocation method has been used in order to solve the obtained equations from mathematical modelling of the process. The goal of this study is to maximise the aromatics and hydrogen production rate. Therefore, the objective function is the combination of two terms which include the production rate of the mentioned components. The catalyst distribution for each reactor, the inlet pressure of the system, Length per radius for each reactor, the naphtha feed molar flow rate and the hydrogen mole fraction in the recycle stream as well as the inlet temperature of each reactor have been optimised in this study. © 2011 Canadian Society for Chemical Engineering  相似文献   
40.
Polypropylene (PP) was modified utilizing two types of polyesteramide‐based hyperbranched polymers (amphiphilic PS and hydrophilic PH). A maleicanhydride‐modified PP (PM) was used as a reactive dispersing agent to enhance the modification by grafting the hyperbranched polymers onto the PP chains. Pure PP, two different non‐reactively modified samples, i.e. excluding PM, and two different reactively modified samples, i.e. including PM, were studied. Investigating the morphology of the samples was performed by scanning electron microscopy. To follow the effect of the modification on the dynamic mechanical properties, dynamic mechanical analysis experiments both in the melt (rheometric mechanical spectrometry) and in solid state (dynamic mechanical thermal analysis) were carried out. In the next step, the nanocrystalline structure of the samples was studied by small angle X‐ray scattering (SAXS) in two different modes, i.e. static and recrystallization. Hundreds of SAXS patterns were analyzed automatically using procedures written in PV‐WAVE image‐processing software. The chord distribution function (CDF) was calculated and the long period (lp) of the crystal lamellae was extracted from the CDFs. The rheometric mechanical spectrometry results show that both hyperbranched polymers decrease complex viscosity η* and enhance liquid‐like behavior. This happens more significantly when PM is included. The dynamic mechanical thermal analysis results reveal that Tg decreases when PS and PH are added. In the reactively modified samples this reduction is compensated most probably because of the crosslinked structure formed through the grafting reaction between the hyperbranched polymers and PM. Such structure is confirmed by SAXS data and calculated CDFs in the recrystallization mode. Static SAXS data also show enhancement in the crosshatched morphology of the crystalline lamellae of PP for reactively modified samples compared with non‐reactively modified samples. © 2013 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号