首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   8篇
化学工业   12篇
金属工艺   1篇
机械仪表   3篇
能源动力   6篇
轻工业   1篇
石油天然气   3篇
无线电   6篇
一般工业技术   26篇
冶金工业   9篇
自动化技术   19篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2002年   3篇
  2001年   2篇
  1999年   4篇
  1998年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
81.
Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton–Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle. An erratum to this article can be found at  相似文献   
82.
Barium hexaferrite (M-phase) prepared by the flux method is found to exhibit a √3a × √3a superstructure similar to barium hexaaluminate.  相似文献   
83.
An alcohol-free, eco-friendly technique was adapted for the synthesis of undoped ZnO and Cs-(cesium) doped ZnO nanoparticles (NPs). The effect of annealing and dopant concentration on its structural and optical properties was investigated. X-ray diffraction results confirmed the formation of polycrystalline hexagonal wurtzite structure and enhanced crystallinity was observed for 1 mol%: Cs-doped ZnO NPs. Scanning electron microscopy results revealed triangular-shaped NPs and increase in the crystallite size is noticed with increase in dopant concentration. UV–visible results showed shift in the band edge toward higher wave length side with increasing Cs concentration. Reduction in bandgap was observed for Cs-doped ZnO NPs, due to quantum confinement effect. Transmittance value increased to 86 % with the inclusion of Cs in ZnO lattice. Room temperature photoluminescence analysis of Cs-doped ZnO NPs reveals bandedge emission along with 450 nm emission due to Zn vacancy and Zn interstitial defects. Electrical measurements confirmed the realization of p-type conductivity in Cs-doped ZnO NPs with a carrier concentration of 1.3 × 1018/cm3.  相似文献   
84.
A new three‐noded C1 beam finite element is derived for the analysis of sandwich beams. The formulation includes transverse shear and warping due to torsion. It also accounts for the interlaminar continuity conditions at the interfaces between the layers, and the boundary conditions at the upper and lower surfaces of the beam. The transverse shear deformation is represented by a cosine function of a higher order. This allows us to avoid using shear correction factors. A warping function obtained from a three‐dimensional elasticity solution is used in the present model. Since the field consistency approach is accounted for interpolating the transverse strain and torsional strain, an exact integration scheme is employed in evaluating the strain energy terms. Performance of the element is tested by comparing the present results with exact three‐dimensional solu‐tions available for laminates under bending, and the elasticity three‐dimensional solution deduced from the de Saint‐Venant solution including both torsion with warping and bending. In addition, three‐dimensional solid finite elements using 27 noded‐brick elements have been used to bring out a reference solution not available for sandwich structures having high shear modular ratio between skins and core. A detailed parametric study is carried out to show the effects of various parameters such as length‐to‐thickness ratio, shear modular ratio, boundary conditions, free (de Saint‐Venant) and constrained torsion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
85.
In this paper, an efficient curved cubic B‐spline beam element is developed based on the field consistency principle, for vibration analysis. The formulation is general in the sense that it includes anisotropy, transverse shear deformation, in‐plane and rotary inertia effects. The element is based on laminated refined beam theory, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the top and bottom surfaces of the beam. The lack of consistency in the shear and membrane strain field interpolations in their constrained physical limits causes poor convergence and unacceptable results due to locking. Hence, numerical experimentation is conducted to check these deficiencies with a series of assumed shear/membrane strain functions, redistributed in a field‐consistent manner. The performance of the element is assessed by studying the free vibration behaviour of a variety of problems ranging from a straight beam to a circular ring. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
86.
This work deals with the investigation of the non‐linear instability behaviour of the composite laminates subjected to periodic in‐plane/axial load, through the finite element formulation with dynamic response analysis. Here, C1 eight‐noded shear‐flexible plate element, based on a new kind of kinematics which allows to exactly ensure the continuity conditions for displacements and stresses at the interfaces between the layers of the laminate, and also the boundary conditions at the top and bottom surfaces of the laminate, is employed. The non‐linear governing equations obtained are solved using the Newmark direct integration method coupled with a modified Newton–Raphson iteration procedure. The analysis brings out various characteristic features of the dynamic stability such as existence of beats, their dependency on the forcing frequency, and the typical character of vibrations in the different regions. Numerical results are also presented to highlight the influence of ply‐angle and lay‐up of the laminate on dynamic stability behaviour of the composite laminates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号