首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   42篇
电工技术   5篇
化学工业   130篇
金属工艺   5篇
机械仪表   13篇
建筑科学   28篇
能源动力   15篇
轻工业   86篇
水利工程   5篇
石油天然气   1篇
无线电   43篇
一般工业技术   94篇
冶金工业   28篇
原子能技术   3篇
自动化技术   99篇
  2024年   3篇
  2023年   11篇
  2022年   4篇
  2021年   39篇
  2020年   20篇
  2019年   22篇
  2018年   29篇
  2017年   21篇
  2016年   23篇
  2015年   16篇
  2014年   30篇
  2013年   35篇
  2012年   24篇
  2011年   33篇
  2010年   33篇
  2009年   32篇
  2008年   16篇
  2007年   23篇
  2006年   19篇
  2005年   12篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   14篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
551.
Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.  相似文献   
552.
The possibility of using fullerenes as containers for toxic beryllium atoms is studied by a multi-scale approach in which first-principles and classical molecular dynamics simulations are combined. By studying the energetics, electronic and spectroscopic properties of Be-fullerene systems and by simulating their interaction at finite temperature in vacuo and in representative biological environments it is concluded that: i) Be endohedral complexes can be obtained by implanting Be atoms at energies >2.3 eV that is consistent with laser implantation technologies; ii) it is in principle possible to distinguish stable endohedral complexes from metastable exohedral ones by optical absorption, suggesting that optical spectroscopy can be a valuable a non-destructive technique to assist the synthesis and the control of implanted films iii) the Be-endohedral complexes are long-lived and thermodynamically stable and can confine beryllium both in vacuo and in aqueous solution; iv) Be@C60 complexes are likely unable to penetrate the selectivity filters of a prototypical protein showing that fullerene prevents undesired interactions with biomolecules and toxicity effects of Be2+ related to replacement of the Ca2+. Overall, these results provide an assessment on the possibility to encapsulate Be atoms into fullerenes by ion implantation to synthesize inert and highly stable and safe molecular containers for toxic beryllium radionuclides. Great opportunities are expected for the realization and application of Be-C60 complexes to nanotechnology and nanomedicine with particularly appealing perspectives in the field of neutron capture therapy of cancer.  相似文献   
553.
Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading-edge (LE) erosion of wind turbine blades is important to design cost-effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub-height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.  相似文献   
554.
In this work, the mechanisms of radical generation on different functionalized graphene oxide (GO) conjugates under near-infrared (NIR) light irradiation are investigated. The GO conjugates are designed to understand how chemical functionalization can influence the generation of radicals. Both pristine and functionalized GO are irradiated by a NIR laser, and the production of different reactive oxygen species (ROS) is investigated using fluorimetry and electron paramagnetic resonance to describe the type of radicals present on the surface of GO. The mechanism of ROS formation involves a charge transfer from the material to the oxygen present in the media, via the production of superoxide and singlet oxygen. Cytotoxicity and effects of ROS generation are then evaluated using breast cancer cells, evidencing a concentration dependent cell death associated to the heat and ROS. The study provides new hints to understand the photogeneration of radicals on the surface of GO upon near infrared irradiation, as well as, to assess the impact on these radicals in the context of a combined drug delivery system and phototherapeutic approach. These discoveries open the way for a better control of phototherapy-based treatments employing graphene-based materials.  相似文献   
555.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号