首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   67篇
  国内免费   7篇
电工技术   89篇
综合类   3篇
化学工业   530篇
金属工艺   40篇
机械仪表   33篇
建筑科学   49篇
矿业工程   4篇
能源动力   95篇
轻工业   265篇
水利工程   2篇
武器工业   1篇
无线电   108篇
一般工业技术   324篇
冶金工业   169篇
原子能技术   45篇
自动化技术   139篇
  2022年   9篇
  2021年   40篇
  2020年   13篇
  2019年   26篇
  2018年   32篇
  2017年   31篇
  2016年   38篇
  2015年   26篇
  2014年   35篇
  2013年   84篇
  2012年   71篇
  2011年   112篇
  2010年   83篇
  2009年   89篇
  2008年   103篇
  2007年   87篇
  2006年   80篇
  2005年   78篇
  2004年   65篇
  2003年   68篇
  2002年   63篇
  2001年   37篇
  2000年   42篇
  1999年   33篇
  1998年   63篇
  1997年   54篇
  1996年   28篇
  1995年   35篇
  1994年   35篇
  1993年   30篇
  1992年   28篇
  1991年   25篇
  1990年   10篇
  1989年   20篇
  1988年   11篇
  1987年   8篇
  1986年   12篇
  1985年   15篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1979年   7篇
  1978年   8篇
  1976年   11篇
  1975年   8篇
  1968年   12篇
  1967年   8篇
  1965年   12篇
  1964年   9篇
  1963年   7篇
排序方式: 共有1896条查询结果,搜索用时 312 毫秒
21.
Oxide semiconductors have been examined to develop NOx sensors for exhaust monitoring. Titania doped with trivalent elements, such as Al3+, Sc3+, Ga3+ or In3+, has a good sensitivity and selectivity to NO between 450 and 550 °C, and shows rapid response. A sensor probe for monitoring exhaust NOx has been fabricated. Many kinds of interference gases, such as C3H6, CO and SO2, have been found to have only a slight influence on the sensor response to NO. The influence of O2 and H2O is also negligible, except for the cases of 0% H2O and fuel-rich conditions. In accordance with these results, the sensor probe operates satisfactority in the exhaust gas of various combustion conditions without interference from the various kinds of gas species in the exhaust gases.  相似文献   
22.
23.

The impact of micro-alloying on tensile behavior at strain rates in various ranges is examined using five types of extruded Mg-0.3 at. pct Mn–0.1 at. pct X ternary alloys, where X is selected as a common element, Al, Li, Sn, Y or Zn. Microstructural observations reveal that the average grain size of these extruded alloys is between 1 and 3 μm, and these micro-alloying elements segregate at grain boundaries. In room temperature tensile and compression tests, these results show that the mechanical properties and deformation behavior are influenced by the micro-alloying element, even as a small addition of 0.1 at. pct. Mg–Mn–Y and Mg–Mn-Zn alloys show higher strength and smaller strain rate sensitivity (m-value) among the present alloys, owing to the rate-controlling mechanism as dislocation slip. On the other hand, the Mg–Mn–Li alloy exhibits the largest elongation to failure in tension and the highest strain rate sensitivity, associated with high contribution of grain boundary sliding to deformation. These differences are due to the grain boundary segregation of the micro-alloying elements. Compared to the common Mg alloys, the present ternary alloys also show a trade-off relationship between strength and ductility, which is similar to that of the well-known Mg alloys; however, these properties of the Mg–Mn system ternary alloys could be controlled via the type of micro-alloying elements with a chemical content of 0.1 at. pct.

  相似文献   
24.
Laser-Sintered Barium Titanate   总被引:1,自引:0,他引:1  
Laser sintering of alkoxy-derived ultrafine BaTiO3 powders was investigated. The temperature increases of the sample with laser irradiation were measured with a thermocouple. It was found that laser irradiation could generate enough heat to sinter ceramics. A slurry was prepared by mixing an alkoxy-derived BaTiO3 powder, binder additives, solvent, and plasticizer. The slurry was tape cast and dried to give a green sheet. The green sheet was laser sintered and was then characterized by SEM, XRD, and density measurements. The effect of burnout before laser irradiation and the characteristic microstructure of laser-sintered BaTiO3 are described.  相似文献   
25.
Summary Polysilanes with an optically active alkoxy group, i.e., (S)-(+)-2-butoxy, (R)-(-)-2-butoxy, (S)-(-)-2-methyl-1-butoxy, and (S)-(+)-3,7-dimethyl-1-octoxy, at the terminal positions, the chiral carbon centers of which were located at the α, β, and γ positions relative to the oxygen, respectively, were prepared, and the effect of the position of chiral center of the terminal optically active group on the induction of optical activity in polysilanes was investigated. The circular dichroism (CD) spectra of these polymers showed positive Cotton signals around 340 nm at temperatures below -20 °C, but the intensities were small, indicating that the optically active groups at the terminal positions have some ability, albeit small, to induce optical activity to the polysilanes. Further, the optically active (S)-(+)-2-butoxy and (R)-(-)-2-butoxy groups did not control the helical sense direction of the polymers, despite the different chiral stimuli from the 2-butoxy groups introduced to the terminal positions. To control the helical structure of polysilanes by the use of optically active terminal groups, appropriate optically active groups are required.  相似文献   
26.
Novel Lu-α-SiAlON ceramics were produced by hot pressing mixtures of Si3N4, Lu2O3, AlN, and Al2O3 at 1950°C for 2 h in a nitrogen atmosphere. The resultant SiAlON was fully dense and possessed a uniform, equiaxed microstructure with a grain size of ∼1 μm, which resulted in a high hardness of >19 GPa. In addition to high hardness, the sample showed very high optical transparency in the visible light region, with >70% transmission at higher wavelengths. This high transparency was attributed to the uniform, dense microstructure and lack of residual grain-boundary phase.  相似文献   
27.
The fracture energies of the tape-cast silicon nitride with and without 3 wt% rod-like β-Si3N4 seed addition were investigated by a chevron-notched-beam technique. The material was doped with Lu2O3–SiO2 as sintering additives for giving rigid grain boundaries and good heat resistance. The seeded and tape-cast silicon nitride has anisotropic microstructure, where the fibrous grains grown from seeds were preferentially aligned parallel to the casting direction. When a stress was applied parallel to the fibrous grain alignment direction, the strength measured at 1500°C was 738 MPa, which was almost the same as room temperature strength 739 MPa. The fracture energy of the tape-cast Si3N4 without seed addition was 109 and 454 J/m2 at room temperature and 1500°C, respectively. On the contrary, the fracture energy of the seeded and tape-cast Si3N4 was 301 and 781 J/m2 at room temperature and 1500°C, respectively, when a stress was applied parallel to the fibrous gain alignment. The large fracture energies were attributable primarily to the unidirectional alignment fibrous Si3N4 grains.  相似文献   
28.
This paper deals with the epoxide treatment of silk fabrics by the pad/batch method. The optimum reaction conditions, i.e., NaOH concentration, and reaction temperature were 2.5 g/L and 30°C, respectively. A weight gain of 8.5% was attained at a reaction time of 6 h. This value slightly increased to 10% after 24 h. The reactivity of tyrosine and basic amino acid residues was dependent on the reaction time and did not significantly differ from the results of epoxide-treated silk fiber by the conventional method in tetrachloroethylene. The moisture regain slightly decreased at 4% weight gain and then increased with the epoxide content, exceeding the value of the untreated control. The crease recovery of the epoxide-treated silk fabrics measured in the wet state was significantly improved, whereas that in the dry state was almost unchanged. The rate of photoyellowing of the epoxide-treated silk fabrics by the pad/batch method was reduced significantly compared with that of the untreated control. Among the mechanical properties, elongation at break and tensile modulus remained unchanged, whereas the tensile strength slightly increased following the epoxide reaction. The thermal properties were evaluated by DSC and TGA and on the basis of the dynamic viscoelastic measurements. The DSC curve of the epoxide-treated sample showed a slight increase of the decomposition temperature of silk fibroin. The rate of weight loss determined by TGA remained unchanged regardless of the chemical modification, whereas the peak of loss modulus became broader and shifted to lower temperature. The X-ray diffractograms showed that the crystalline structure of silk fibers was not affected by the reaction with epoxides. © 1993 John Wiley & Sons, Inc.  相似文献   
29.
The effect of curing temperature (40°, 60°, 80°C) on the hydration behavior of β-dicalcium silicate (β-C2S) was investigated. The β-C2S was obtained by decomposition of hillebrandite, Ca2(SiO3)(OH)2, at 600°C, has a specific surface area of about 7 m2/g, and is in the form of fibrous crystals. The dependence of the hydration reaction on temperature continues until the reaction is completed. The hydration is completed in 1 day at 80°C and in 14 days at 14°C. The hydration mechanism is different above and below 60°C, but at a given temperature, the reaction mechanism and the silicate anion structures of C-S-H do not change significantly from the initial to the late stages of the reaction. High curing temperature and long curing times after completion of reaction promote silicate polymerization. The Ca/Si ratio of C-S-H shows high values, being almost 2.0 above 60°C and 1.95 below 40°C.  相似文献   
30.
A W2C-nanoparticle-reinforced Si3N4-matrix composite was fabricated by sintering porous Si3N4 that had been infiltrated with a tungsten solution. During the sintering procedure, nanometer-sized W2C particles grew in situ from the reaction between the tungsten and carbon sources considered to originate mainly from residual binder. The W2C particles resided in the grain-boundary junctions of the Si3N4, had an average diameter of ∼60 nm, and were polyhedral in shape. Because the residual carbon, which normally would obstruct sintering, reacted with the tungsten to form W2C particles in the composite, the sinterability of the Si3N4 was improved, and a W2C–Si3N4 composite with almost full density was obtained. The flexural strength of the W2C–Si3N4 composite was 1212 MPa, ∼34% higher than that of standard sintered Si3N4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号