首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41579篇
  免费   14883篇
  国内免费   7篇
电工技术   811篇
综合类   4篇
化学工业   18002篇
金属工艺   503篇
机械仪表   1044篇
建筑科学   1765篇
矿业工程   9篇
能源动力   1010篇
轻工业   7347篇
水利工程   312篇
石油天然气   66篇
无线电   7543篇
一般工业技术   12312篇
冶金工业   892篇
原子能技术   93篇
自动化技术   4756篇
  2023年   53篇
  2022年   48篇
  2021年   308篇
  2020年   1520篇
  2019年   3254篇
  2018年   3210篇
  2017年   3572篇
  2016年   4015篇
  2015年   4044篇
  2014年   4052篇
  2013年   5247篇
  2012年   2973篇
  2011年   2723篇
  2010年   2867篇
  2009年   2776篇
  2008年   2317篇
  2007年   2092篇
  2006年   1859篇
  2005年   1533篇
  2004年   1496篇
  2003年   1423篇
  2002年   1363篇
  2001年   1191篇
  2000年   1165篇
  1999年   537篇
  1998年   186篇
  1997年   136篇
  1996年   90篇
  1995年   54篇
  1994年   57篇
  1993年   41篇
  1992年   35篇
  1991年   38篇
  1990年   25篇
  1989年   18篇
  1988年   11篇
  1987年   13篇
  1986年   16篇
  1985年   17篇
  1984年   14篇
  1982年   8篇
  1981年   11篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1977年   8篇
  1976年   9篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Imaging‐guided therapy systems (IGTSs) are revolutionary techniques used in cancer treatment due to their safety and efficiency. IGTSs should have tunable compositions for bioimaging, a suitable size and shape for biotransfer, sufficient channels and/or pores for drug loading, and intrinsic biocompatibility. Here, a biocompatible nanoscale zirconium‐porphyrin metal–organic framework (NPMOF)‐based IGTS that is prepared using a microemulsion strategy and carefully tuned reaction conditions is reported. A high content of porphyrin (59.8%) allows the achievement of efficient fluorescent imaging and photodynamic therapy (PDT). The 1D channel of the Kagome topology of NPMOFs provides a 109% doxorubicin loading and pH‐response smart release for chemotherapy. The fluorescence guiding of the chemotherapy‐and‐PDT dual system is confirmed by the concentration of NPMOFs at cancer sites after irradiation with a laser and doxorubicin release, while low toxicity is observed in normal tissues. NPMOFs are established as a promising platform for the early diagnosis of cancer and initial therapy.  相似文献   
992.
Safe and long cycle life electrode materials for lithium‐ion batteries are significantly important to meet the increasing demands of rechargeable batteries. Niobium pentoxide (Nb2O5) is one of the highly promising candidates for stable electrodes due to its safety and minimal volume expansion. Nevertheless, pulverization and low conductivity of Nb2O5 have remained as inherent challenges for its practical use as viable electrodes. A highly facile method is proposed to improve the overall cycle retention of Nb2O5 microparticles by ammonia (NH3) gas‐driven nitridation. After nitridation, an ultrathin surficial layer (2 nm) is formed on the Nb2O5, acting as a bifunctional nanolayer that allows facile lithium (Li)‐ion transport (10–100 times higher Li diffusivity compared with pristine Nb2O5 microparticles) and further prevents the pulverization of Nb2O5. With the subsequent decoration of silver (Ag) nanoparticles (NPs), the low electric conductivity of nitridated Nb2O5 is also significantly improved. Cycle retention is greatly improved for nitridated Nb2O5 (96.7%) compared with Nb2O5 (64.7%) for 500 cycles. Ag‐decorated, nitridated Nb2O5 microparticles and nitridated Nb2O5 microparticles exhibit ultrastable cycling for 3000 cycles at high current density (3000 mA g?1), which highlights the importance of the surficial nanolayer in improving overall electrochemical performances, in addition to conductive NPs.  相似文献   
993.
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub‐micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd‐doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin–lattice and spin–spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron–hole recombination in the doped lattice. The Gd‐doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via ?OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd‐doping up to 10%. Cellular internalization and biocompatibility of TiO2@x Gd NBs are tested in vitro on MG‐63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.  相似文献   
994.
Uniquely structured CoSe2–carbon nanotube (CNT) composite microspheres with optimized morphology for the hydrogen‐evolution reaction (HER) are prepared by spray pyrolysis and subsequent selenization. The ultrafine CoSe2 nanocrystals uniformly decorate the entire macroporous CNT backbone in CoSe2–CNT composite microspheres. The macroporous CNT backbone strongly improves the electrocatalytic activity of CoSe2 by improving the electrical conductivity and minimizing the growth of CoSe2 nanocrystals during the synthesis process. In addition, the macroporous structure resulting from the CNT backbone improves the electrocatalytic activity of the CoSe2–CNT microspheres by increasing the removal rate of generated H2 and minimizing the polarization of the electrode during HER. The CoSe2–CNT composite microspheres demonstrate excellent catalytic activity for HER in an acidic medium (10 mA cm?2 at an overpotential of ≈174 mV). The bare CoSe2 powders exhibit moderate HER activity, with an overpotential of 226 mV at 10 mA cm?2. The Tafel slopes for the CoSe2–CNT composite and bare CoSe2 powders are 37.8 and 58.9 mV dec?1, respectively. The CoSe2–CNT composite microspheres have a slightly larger Tafel slope than that of commercial carbon‐supported platinum nanoparticles, which is 30.2 mV dec–1.  相似文献   
995.
CH3NH3PbI3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long‐wavelength regime ranging from PbI2 absorption edge (500 nm) to its optical band‐gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible‐light absorption in the short wavelengths below 500 nm and charge extraction capability of electron–hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine‐doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short‐wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long‐wavelength photons (500 nm < λ < 780 nm). Moreover, the light‐driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high‐performance perovskite photovoltaic cells.  相似文献   
996.
Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon‐enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion‐interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high‐throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing.  相似文献   
997.
A porphyrin–peptoid‐hybridized silica‐coated gold nanoparticle is developed, which is inspired by the protein–chlorophyll ensemble found in photosynthetic antenna. In the natural antenna, chlorophylls are integrated into dense assemblies that are supported by frameworks of proteins, which ensure optimal pigment arrangement for effective light harvesting. In the subject platform, porphyrins are conjugated to the peptoid helix scaffold in a structurally well‐defined alignments and subsequently immobilized on the surface of nanoparticles. This prevents intermolecular aggregation among porphyrins and allows high resolution analysis of the effect of porphyrin configuration on the optical properties of the system. Interestingly, under the influence of plasmon from the gold nanoparticle core, the fluorescence of porphyrin is enhanced up to 24‐fold at the wavelength where the plasmon resonance matches the porphyrin excitation wavelength. In addition, differences in porphyrin configuration result in spectral modification of their fluorescence emissions. Particularly, the peptoid bearing two porphyrins at a distance of 6 Å shows the most significant alteration in fluorescence. The platform can facilitate extensive studies on the relationship between porphyrin arrangement design and their photophysical interaction in antenna complexes.  相似文献   
998.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   
999.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
1000.
Compressed monodisperse emulsions in confined space exhibit highly ordered structures. The influence of the volume fraction and the confinement geometry on the organized structures is investigated and the mechanism by which structural transition occurs is studied. Based on the understanding of ordering behavior of compressed emulsions, a simple and high‐throughput method to fabricate monodisperse polyhedral microgels using the emulsions as the template is developed. By controlling the geometry of the confined spaces, a variety of shapes such as hexagonal prism, Fejes Toth honeycomb prism, truncated octahedron, pyritohedron, and truncated hexagonal trapezohedron are implemented. Moreover, the edge sharpness of each shape is controllable by adjusting the drop volume fraction. This design principle can be readily extended to other shapes and materials, and therefore provides a useful means to create polyhedral microparticles for both fundamental study and practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号