首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   92篇
  国内免费   1篇
电工技术   5篇
综合类   1篇
化学工业   544篇
金属工艺   23篇
机械仪表   11篇
建筑科学   21篇
矿业工程   6篇
能源动力   21篇
轻工业   184篇
水利工程   5篇
石油天然气   2篇
无线电   37篇
一般工业技术   119篇
冶金工业   32篇
自动化技术   79篇
  2024年   2篇
  2023年   8篇
  2022年   78篇
  2021年   243篇
  2020年   57篇
  2019年   47篇
  2018年   50篇
  2017年   50篇
  2016年   62篇
  2015年   45篇
  2014年   64篇
  2013年   63篇
  2012年   56篇
  2011年   38篇
  2010年   27篇
  2009年   25篇
  2008年   26篇
  2007年   25篇
  2006年   17篇
  2005年   17篇
  2004年   16篇
  2003年   8篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1090条查询结果,搜索用时 31 毫秒
991.
Cross-linked polysiloxane microspheres containing a large number of SiOH groups were modified by introduction of organic thiol groups, which were further used for the functionalization of the microspheres with silver thiolate groups. The microspheres were characterized by 29Si MAS NMR, 13C MAS NMR, SEM, XPS and elemental analysis. They were tested as biocides against selected Gram-positive and Gram-negative bacteria strains and exhibited high bactericidal activity. Separately, linear polysiloxane polymers equipped with organothiol groups and loaded with silver were synthesized. Their antibacterial activity was compared with that of silver thiolate-functionalized microspheres. Different shape of particles and a different form of silver explained somewhat lower activity of polymers.  相似文献   
992.
In this study, culture supernatnats of Bacillus subtilis T‐1 growing on brewery effluents and molasses was used for silver nanoparticles (Ag‐NPs) synthesis. The biosurfactant production of B. subtilis T‐1 was confirmed by the detection of genes in the genome and by the identification of the product in the supernatants. The genes for synthesis of surfactin (sfp, srfAA) and iturin (ituC) were noted by PCR reactions. Also, in examined culture supernatants the presence of C13, C14 and C15 surfactin homologues with the sodiated molecules [M + Na]+ at m /z 1030, 1044 and 1058 was confirmed using LC/MS/MS analysis. The formation of NPs in the culture supernatants was confirmed by UV–vis spectroscopy. The dynamic light scattering measurements and transmission electron microscopy images showed the nanometric sizes of the biosynthesised Ag‐NPs which ranged from several nm to several tens of nm depending on the used culture supernatant. Biological properties of Ag‐NPs were evaluated by binding of Ag‐NPs with DNA isolated from the Escherichia coli ATCC 25922 and B. subtilis ATCC 6633. Biogenic Ag‐NPs were actively bound to DNA in increased concentration which could be the one important mode of antibacterial action of the Ag‐NPs.Inspec keywords: silver, nanoparticles, nanofabrication, materials preparation, microorganisms, antibacterial activity, industrial waste, agrochemicals, surfactants, breweries, genomics, genetics, chromatography, mass spectroscopic chemical analysis, ultraviolet spectroscopy, visible spectroscopy, spectrochemical analysis, light scattering, transmission electron microscopy, DNA, bonds (chemical), biochemistry, molecular biophysics, nanobiotechnology, biological techniques, particle size, enzymesOther keywords: silver nanoparticle synthesis, Bacillus subtilis T‐1 growth, agro‐industrial waste, biosurfactant production, brewery effluent, molasses, Ag‐NP synthesis, B. subtilis T‐1, gene detection, genome, supernatant product identification, surfactin synthesis, sfp, srfAA, iturin synthesis, ituC, PCR reaction, C13 surfactin homologue, C14 surfactin homologue, C15 surfactin homologue, sodiated molecules, LC‐MS‐MS analysis, UV‐vis spectroscopy, dynamic light scattering measurement, transmission electron microscopy image, Ag‐NP nanometric size range, Ag‐NP biosynthesis, used culture supernatant dependence, biological properties, DNA isolation, Escherichia coli ATCC 25922, B. subtilis ATCC 6633, biogenic Ag‐NP‐DNA binding, Ag‐NP antibacterial action, Ag  相似文献   
993.
This study presents a novel, green, and efficient way of preparing crosslinked aerogels from cellulose nanofibers (CNFs) and alginate using non‐covalent chemistry. This new process can ultimately facilitate the fast, continuous, and large‐scale production of porous, light‐weight materials as it does not require freeze‐drying, supercritical CO2 drying, or any environmentally harmful crosslinking chemistries. The reported preparation procedure relies solely on the successive freezing, solvent‐exchange, and ambient drying of composite CNF‐alginate gels. The presented findings suggest that a highly‐porous structure can be preserved throughout the process by simply controlling the ionic strength of the gel. Aerogels with tunable densities (23–38 kg m?3) and compressive moduli (97–275 kPa) can be prepared by using different CNF concentrations. These low‐density networks have a unique combination of formability (using molding or 3D‐printing) and wet‐stability (when ion exchanged to calcium ions). To demonstrate their use in advanced wet applications, the printed aerogels are functionalized with very high loadings of conducting poly(3,4‐ethylenedioxythiophene):tosylate (PEDOT:TOS) polymer by using a novel in situ polymerization approach. In‐depth material characterization reveals that these aerogels have the potential to be used in not only energy storage applications (specific capacitance of 78 F g?1), but also as mechanical‐strain and humidity sensors.  相似文献   
994.
This article reports on the effect of silver nanoparticles (NPs), used as active fillers, on the piezoelectric response of polymer composites. In particular, it is demonstrated that the application of a periodic electric field drives a collective drift of surface atoms of the NPs along the field direction (“electrokinetic effect”) which, in turn, creates macroscopic reversible tensile states. Overdriving the system, in high‐field conditions, the electronic current is counterbalanced by a massive injection of Ag+ ions into the matrix, producing a metastable exceptional expansion of the device. For similitude with the converse piezoelectric effect, it has been called the converse piezo–electro–kinetic effect. By using in situ spectroscopy, vibrometric analysis, real‐time UV‐visible spectroscopy, in situ electrical transmission electron microscopy, and in qualitative form ab initio and finite element method numerical simulations, i) the injection of ions from the NPs to the matrix, ii) the surface migration‐induced NP reshaping, and iii) the NP migration and consequent percolation path adjustments are shown. The implications of this study are significant for the development of ultrafast soft ionic actuators and create the premises for a broad range of applications in smart materials and devices.  相似文献   
995.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   
996.
997.
998.
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.  相似文献   
999.
The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O2) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing.  相似文献   
1000.
Friction layer and friction debris samples obtained from commercially available carbon-carbon composite brake material (3D, C/C PAN CVI) by sub-scale dynamometer testing at 50% relative humidity and 100% normal aircraft landing energy have been characterized by multiple thermo-analytical techniques to investigate adsorption/desorption phenomena of physically bonded moisture and formation and decomposition of oxygen-containing structures. Thermogravimetric Analysis/Fourier Transform Infrared Spectroscopy, Temperature Programmed Reduction and Pyrolysis-Gas Chromatography-Mass Spectrometry experiments with friction layer and friction debris were accompanied with release of H2O, CO2 and CO on heating. These products are not observed when comparable analyses with the bulk brake material were performed. These data reflect significant oxidation of the original brake material and indicate that gaseous products (carbon oxides, H2O) are released from the modified brake material during heating to temperatures approximating those experienced during typical aircraft braking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号