首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2686篇
  免费   95篇
  国内免费   8篇
电工技术   194篇
综合类   5篇
化学工业   784篇
金属工艺   80篇
机械仪表   76篇
建筑科学   44篇
能源动力   137篇
轻工业   301篇
水利工程   9篇
石油天然气   1篇
无线电   179篇
一般工业技术   506篇
冶金工业   92篇
原子能技术   140篇
自动化技术   241篇
  2023年   11篇
  2022年   19篇
  2021年   56篇
  2020年   31篇
  2019年   44篇
  2018年   54篇
  2017年   43篇
  2016年   54篇
  2015年   39篇
  2014年   95篇
  2013年   157篇
  2012年   128篇
  2011年   191篇
  2010年   138篇
  2009年   142篇
  2008年   152篇
  2007年   146篇
  2006年   129篇
  2005年   120篇
  2004年   92篇
  2003年   107篇
  2002年   91篇
  2001年   54篇
  2000年   47篇
  1999年   51篇
  1998年   57篇
  1997年   48篇
  1996年   43篇
  1995年   43篇
  1994年   51篇
  1993年   30篇
  1992年   20篇
  1991年   24篇
  1990年   22篇
  1989年   24篇
  1988年   15篇
  1987年   22篇
  1986年   18篇
  1985年   23篇
  1984年   16篇
  1983年   23篇
  1982年   20篇
  1981年   18篇
  1980年   25篇
  1979年   14篇
  1978年   5篇
  1977年   7篇
  1976年   11篇
  1975年   5篇
  1972年   4篇
排序方式: 共有2789条查询结果,搜索用时 15 毫秒
41.
Recently, we introduced a concept of combinatorial chemistry to computational chemistry and proposed a new method called “combinatorial computational chemistry”, which enables us to perform a theoretical high-throughput screening of catalysts. In the present paper, we reviewed our recent application of our combinatorial computational chemistry approach to the design of new catalysts for high-quality transportation fuels. By using our combinatorial computational chemistry techniques, we succeeded to predict new catalysts for methanol synthesis and Fischer–Tropsch synthesis. Moreover, we have succeeded in the development of chemical reaction dynamics simulator based on our original tight-binding quantum chemical molecular dynamics method. This program realizes more than 5000 times acceleration compared to the regular first-principles molecular dynamics method. Electronic- and atomic-level information on the catalytic reaction dynamics at reaction temperatures significantly contributes the catalyst design and development. Hence, we also summarized our recent applications of the above quantum chemical molecular dynamics method to the clarification of the methanol synthesis dynamics in this review.  相似文献   
42.
Flow problems with moving boundaries and interfaces include fluid–structure interaction (FSI) and a number of other classes of problems, have an important place in engineering analysis and design, and offer some formidable computational challenges. Bringing solution and analysis to them motivated the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method and also the variational multiscale version of the Arbitrary Lagrangian–Eulerian method (ALE-VMS). Since their inception, these two methods and their improved versions have been applied to a diverse set of challenging problems with a common core computational technology need. The classes of problems solved include free-surface and two-fluid flows, fluid–object and fluid–particle interaction, FSI, and flows with solid surfaces in fast, linear or rotational relative motion. Some of the most challenging FSI problems, including parachute FSI, wind-turbine FSI and arterial FSI, are being solved and analyzed with the DSD/SST and ALE-VMS methods as core technologies. Better accuracy and improved turbulence modeling were brought with the recently-introduced VMS version of the DSD/SST method, which is called DSD/SST-VMST (also ST-VMS). In specific classes of problems, such as parachute FSI, arterial FSI, ship hydrodynamics, fluid–object interaction, aerodynamics of flapping wings, and wind-turbine aerodynamics and FSI, the scope and accuracy of the FSI modeling were increased with the special ALE-VMS and ST FSI techniques targeting each of those classes of problems. This article provides an overview of the core ALE-VMS and ST FSI techniques, their recent versions, and the special ALE-VMS and ST FSI techniques. It also provides examples of challenging problems solved and analyzed in parachute FSI, arterial FSI, ship hydrodynamics, aerodynamics of flapping wings, wind-turbine aerodynamics, and bridge-deck aerodynamics and vortex-induced vibrations.  相似文献   
43.
High-strength calcium metaphosphate fibers for biomedical applications are extracted from crystallized products of calcium ultraphosphate glasses by aqueous leaching. In the present work, new types of porous ceramics with a skeleton composed of the crystalline fibers are prepared by heating the fibrous products extracted. The fibers in the ceramic are interlinked to each other by glassy phases formed during the heating. This porous material has a large porosity of >60%. The surface of the skeleton can be successfully converted into new calcium phosphate phases such as apatite by heating the porous material treated with a molten salt mixture of CaCl2-Ca(NO3)2.  相似文献   
44.
The rate of evaporation of monodisperse water droplets was first evaluated by solving numerically the modified Maxwell equation, assuming the cellular model for a droplet clouds. The results are discussed in comparison with those for a single isolated droplet, which can be obtained analytically. The critical conditions for the droplet cloud to be stable are then evaluated as a function of droplet number concentration, droplet size and initial conditions of the surrounding air. Secondly, the equilibrated system, where a water droplet cloud is steadily mixed with unsaturated air, was analysed on the basis of enthalpy and material balance of the system to evaluate the total volume change of the droplets. Some of these analyses were verified by experiment, using an ultramicroscopic technique which is useful for droplet size analysis.  相似文献   
45.
N‐Isopropylacrylamide/acrylic acid copolymer hydrogels were synthesized with ultrasound. The thermoresponsive phase behaviors of gels synthesized with ultrasound (US gels) were investigated and compared with those of gels synthesized in the absence of ultrasound (FR gels). The US gels showed thermoresponsive swelling behavior with a large hysteresis over a wide range of temperatures around its phase‐transition temperature. The hysteresis became larger with an increasing copolymerized acrylic acid content. The US gels were also characterized from the viewpoint of chemical, hydration, and macroscopic physical structures. Little difference was observed in the chemical and hydration structures of the FR gels and US gels. The macroscopic physical structure of the US gels was, however, distinct from that of the FR gels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2449–2452, 2003  相似文献   
46.
A novel cellulose solution, prepared by dissolving an alkali-soluble cellulose, which was obtained by the steam explosion treatment on almost pure natural cellulose (soft wood pulp), into the aqueous sodium hydroxide solution with specific concentration (9.1 wt %) was employed for the first time to prepare a new class of multifilament-type cellulose fiber. For this purpose a wet spinning system with acid coagulation bath was applied. The mechanical properties and structural characteristics of the resulting cellulose fibers were compared with those of regenerated cellulose fibers such as viscose rayon and cuprammonium rayon commercially available. X-ray analysis shows that the new cellulose fiber is crystallographically cellulose II, and its crystallinity is higher but its crystalline orientation is slightly lower than those of other commercial regenerated fibers. The degree of breakdown of intramolecular hydrogen bond at C3[Xam(C3)] of the cellulose fiber, as determined by solid-state cross-polarization magic-angle sample spinning (CP/MAS) 13C NMR, is much lower than other, and the NMR spectra of its dry and wet state were significantly different from each other, indicating that cellulose molecules in the new cellulose fiber are quite mobile when wet. This phenomenon has not been reported for so-called regenerated cellulose fibers.  相似文献   
47.
In order to develop environmentally friendly coloured materials, cellulose composite spherical microbeads hybridised with titanium dioxide (TiO2) particles and inorganic pigment were prepared by a phase-separation method using viscose and an aqueous solution containing sodium polyacrylate. Findings regarding the relationships between cellulose xanthate and the electronic characteristics of TiO2 particles used in the cellulose/inorganic material composite sphering process are also reported. These findings suggest that the location of TiO2 particles in cellulose microbeads is related to electrical repulsion between the xanthate (CSS) group and TiO2. The use of TiO2 powder as colour pigment is limited, as its colour is white. The cellulose composite spherical microbeads covered with TiO2 and Fe2O3 particles were developed by addition of iron oxide (Fe2O3). Their surfaces were viewed by laser microscope and using SEM images. These composite microbeads retained the photocatalytic property of TiO2. Cellulose/TiO2/Fe2O3 composite spherical microbeads with both colour function and photocatalytic properties were successfully prepared.  相似文献   
48.
The polymeric microspheres were synthesized by the precipitation copolymerization of glycidyl methacrylate (GMA) with methacrylic acid(MAA) or 2‐hydoxyethyl methacrylate (2‐HEMA) containing styrene (ST) in SC‐CO2. Scanning electron microscopy (SEM) showed that the products were spherical microparticles, with the addition of MAA and/or 2‐HEMA as the monomer, with diameter of 0.2–2 μm. The effects of copolymerization pressure, temperature, and ratios of GMA/MAA, ST, and/or GMA/2‐HEMA, on the particle size and morphology were investigated in detail. A new experiment setup is proposed for the large amount of production, based on the rule of lower monomer concentration, more stable system, and better use of the present polymerization apparatus. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2425–2431, 2007  相似文献   
49.
The shrinkage behavior of fine zirconia powders containing 2.9 and 7.8 mol% Y2O3 was investigated to clarify the effect of Y2O3 concentration on the initial sintering stage. The shrinkage of powder compact was measured under both conditions of constant rates of heating (CRH) and constant temperatures. CRH measurements revealed that when the Y2O3 concentration of fine zirconia powder increased, the starting temperature of shrinkage shifted to a high temperature. Isothermal shrinkage measurements revealed that the increase in Y2O3 concentration causes the shrinkage rate to decrease. The values of activation energy ( Q ) and frequency-factor term (β0) of diffusion at initial sintering were estimated by applying the sintering-rate equation to the isothermal shrinkage data. When the Y2O3 concentration increases, both Q and β0 of diffusion increase. It is, therefore, concluded that the increase in Y2O3 concentration of fine zirconia powder decreases the shrinkage rate because of increasing Q of diffusion at the initial stage of sintering.  相似文献   
50.
The thermal behaviors and the flame‐retardancy of styrene–ethylene–butadiene–styrene–block copolymer containing various additives were studied. The combustion was measured by the Underwriter laboratory (UL) test and cone calorimeter test and thermogravimetric analysis and program‐mass spectroscopy were applied to analyze the thermal behaviors. The blend with halogen additives showed the best result in the UL test. However, the blend with red‐phosphorous was the best in the cone calorimeter test. As the styrene sequence in the copolymer tended to degradate at a lower temperature, the major scission products spouted out from the polymer surface originated from polystyrene. The shorter the ignition times of the blends with red‐phosphorous were, the lower the peak heat release rates were. It was an interesting phenomenon because it suggested that the chemical structure of the residue changed to more stable polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 156–161, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号