首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   19篇
  国内免费   1篇
电工技术   2篇
化学工业   112篇
金属工艺   6篇
机械仪表   4篇
建筑科学   4篇
能源动力   3篇
轻工业   11篇
石油天然气   2篇
无线电   23篇
一般工业技术   43篇
冶金工业   6篇
自动化技术   22篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   59篇
  2020年   12篇
  2019年   11篇
  2018年   13篇
  2017年   14篇
  2016年   12篇
  2015年   17篇
  2014年   13篇
  2013年   15篇
  2012年   9篇
  2011年   20篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
231.
Acridine cell-penetrating peptide conjugates are an extremely important family of compounds in antitumor chemotherapy. These conjugates are not so widely analysed in antimicrobial therapy, although bioactive peptides could be used as nanocarriers to smuggle antimicrobial compounds. An octaarginine conjugate of an imidazoacridinone derivative (Compound 1-R8) synthetized by us exhibited high antifungal activity against reference and fluconazole-resistant clinical strains (MICs ≤ 4 μg mL−1). Our results clearly demonstrate the qualitative difference in accumulation of the mother compound and Compound 1-R8 conjugate into fungal cells. Only the latter was transported and accumulated effectively. Microscopic and flow cytometry analysis provide some evidence that the killing activity of Compound 1-R8 may be associated with a change in the permeability of the fungal cell membrane. The conjugate exhibited low cytotoxicity against human embryonic kidney (HEK-293) and human liver (HEPG2) cancer cell lines. Nevertheless, the selectivity index value of the conjugate for human pathogenic strains remained favourable and no hemolytic activity was observed. The inhibitory effect of the analysed compound on yeast topoisomerase II activity suggested its molecular target. In summary, conjugation with R8 effectively increased imidazoacridinone derivative ability to enter the fungal cell and achieve a concentration inside the cell that resulted in a high antifungal effect.  相似文献   
232.
Fiber optofluidic laser(FOFL)integrates optical fiber microcavity and microfluidic channel and provides many unique advantages for sensing applications.FOFLs no...  相似文献   
233.
Clean Technologies and Environmental Policy - The following article explains the current condition of the photovoltaics sector both in Poland and worldwide. Recently, a rapid development of solar...  相似文献   
234.
Hydrogels, as 3D networks containing huge amount of water, display similarity to soft tissues, and thus they are of wide interest in tissue engineering. Hydrogels, due to biocompatibility and porous structure, are valuable therapeutic platforms for hydrophilic drugs. Over the last decade, there has been a strong emphasis on the development of hydrogel platforms with the ability to increase the solubility of hydrophobic drugs. However, the pronounced discrepancy between the hydrophilic character of hydrogels and the hydrophobic nature of numerous pharmacologically active compounds is problematic. In recent years, different strategies are applied using special polymer constructs or composite materials exploiting the advanced scientific knowledge in the area of polymer and lipid-based nano- and microcarriers hydrophobization of the hydrogel turns out to be not only valuable in terms of achieving the ability to dissolve poorly soluble drugs in water, but also proves to be crucial in obtaining bioadhesion in wet conditions, but also, unexpected abnormal water swelling behavior, as well as in mechanical properties such as the dissipation mechanism and self-healable hydrogel properties. This review is mainly focused on recent advances in the usage of hydrophobized hydrogels in biomedical applications.  相似文献   
235.
Peptidic motifs folded in a defined conformation are able to inhibit protein-protein interactions (PPIs) covering large interfaces and as such they are biomedical molecules of interest. Mimicry of such natural structures with synthetically tractable constructs often requires complex scaffolding and extensive optimization to preserve the fidelity of binding to the target. Here, we present a novel proteomimetic strategy based on a 2-helix binding motif that is brought together by hybridization of peptide nucleic acids (PNA) and stabilized by a rationally positioned intermolecular disulfide crosslink. Using a solid phase synthesis approach (SPPS), the building blocks are easily accessible and such supramolecular peptide-PNA helical hybrids could be further coiled using precise templated chemistry. The elaboration of the structural design afforded high affinity SARS CoV-2 RBD (receptor binding domain) binders without interference with the underlying peptide sequence, creating a basis for a new architecture of supramolecular proteomimetics.  相似文献   
236.
Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of C C dimers, C H, CO groups, and  COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.  相似文献   
237.
238.
Organic electronics is an emerging technology that enables the fabrication of devices with low-cost and simple solution-based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field-effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 µm short channel, printed with ultra-precise deposition technique (UPD), in fully solution fabricated n-type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high-resolution direct-writing techniques for the fabrication of organic electronics operating in the high-frequency regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号