首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
电工技术   2篇
化学工业   25篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
轻工业   2篇
石油天然气   2篇
无线电   7篇
一般工业技术   29篇
冶金工业   5篇
自动化技术   31篇
  2024年   5篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   8篇
  2015年   5篇
  2014年   10篇
  2013年   6篇
  2012年   10篇
  2010年   8篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1986年   1篇
  1984年   2篇
  1968年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
91.
Sequence segmentation is a well-studied problem, where given a sequence of elements, an integer K, and some measure of homogeneity, the task is to split the sequence into K contiguous segments that are maximally homogeneous. A classic approach to find the optimal solution is by using a dynamic program. Unfortunately, the execution time of this program is quadratic with respect to the length of the input sequence. This makes the algorithm slow for a sequence of non-trivial length. In this paper we study segmentations whose measure of goodness is based on log-linear models, a rich family that contains many of the standard distributions. We present a theoretical result allowing us to prune many suboptimal segmentations. Using this result, we modify the standard dynamic program for 1D log-linear models, and by doing so reduce the computational time. We demonstrate empirically, that this approach can significantly reduce the computational burden of finding the optimal segmentation.  相似文献   
92.
93.
94.
95.
96.
Previous studies have shown that microgroove-initiated contact guidance can induce bone formation in osteoprogenitor cells (OPGs) and produce changes in the cell proteome. For proteomic analysis, differential in-gel electrophoresis (DIGE) can be used as a powerful diagnostic method to provide comparable data between the proteomic profiles of cells cultured in different conditions. This study focuses on the response of OPGs to a novel nanoscale pit topography with osteoinductive properties compared with planar controls. Disordered near-square nanopits with 120 nm diameter and 100 nm depth with an average 300 nm centre-to-centre spacing (300 nm spaced pits in square pattern, but with ±50 nm disorder) were fabricated on 1×1 cm2 polycaprolactone sheets. Human OPGs were seeded onto the test materials. DIGE analysis revealed changes in the expression of a number of distinct proteins, including upregulation of actin isoforms, beta-galectin1, vimentin and procollagen-proline, 2-oxoglutarate 4-dioxygenase and prolyl 4-hydroxylase. Downregulation of enolase, caldesmon, zyxin, GRASP55, Hsp70 (BiP/GRP78), RNH1, cathepsin D and Hsp27 was also observed. The differences in cell morphology and mineralization are also reported using histochemical techniques.  相似文献   
97.
The first series of 2'-substituted 2-(3'-carboxybicyclo[1.1.1]pentyl)glycine derivatives, (2R)- and (2S)-(2',2'-dichloro-3'-carboxybicyclo[1.1.1]pentyl)glycine (10) and (11), and 2-(2'-chloro-3'-carboxybicyclo[1.1.1]pentyl)glycine (12) were synthesized and evaluated as mGluR ligands. Compounds 11 and 12 were shown to be competitive group I mGluR antagonists. These results are also discussed in light of docking studies with both the active (closed) and inactive (open) conformations of mGluR1.  相似文献   
98.
99.
    
Organogels are polymer networks extended by a liquid organic phase, offering a wide range of properties due to the many combinations of polymer networks, solvents, and shapes achievable through 3D printing. However, current printing methods limit solvent choice and composition, which in turn limits organogels' properties, applications, and potential for innovation. As a solution, a method for solvent-independent printing of 3D organogel structures is presented. In this method, the printing step is decoupled from the choice of solvent, allowing access to the full spectrum of solvent diversity, thereby significantly expanding the range of achievable properties in organogel structures. With no changes to the polymer network, the 3D geometry, or the printing methodology itself, the choice of solvent alone is shown to have an enormous impact on organogel properties. As demonstrated, it can modulate the thermo-mechanical properties of the organogels, both shifting and extending their thermal stability range to span from -30 to over 100 °C. The choice of solvent can also transition the organogels from highly adhesive to extremely slippery. Finally, the method also improves the surface smoothness of prints. Such advances have potential applications in soft robotics, actuators, and sensors, and represent a versatile approach to expanding the functionality of 3D-printed organogels.  相似文献   
100.
    
Remote manipulation of microcargo is essential for miniaturized automated experiments in fields such as biology, chemistry, and diagnostics, allowing efficient use of scarce, expensive, or hazardous materials. Current methods for manipulating microcargo are generally limited to droplets as cargo and rely on reduced substrate-cargo friction and special substrate-cargo interactions (electrowetting, anisotropic wetting, water-repellency, etc.) to enable cargo mobility. This limits the versatility of substrate and cargo choice. Here, CART (Carrier-based Actuatable and Reprogrammable Transport) is presented as a solution to these challenges. By introducing a carrier between the substrate and the cargo, CART physically separates them, eliminating the need to reduce substrate-cargo friction and the need for substrate-cargo matching. CART devices are easy to realize, tailor, and post-functionalize. A photo-polymerizable phase-separating resin is used to 3D-print porous carriers that are then infused with ferrofluid to make them magnetically responsive, enabling untethered cargo manipulation on both solid and liquid substrates. Using CART, various cargos can be remotely moved, rotated/mixed, inverted, and lifted, further facilitating interaction between two carriers for transferring, merging, and tunably splitting cargo. Overall, CART advances microcargo manipulation by decoupling cargo from the substrate and leveraging magnetic responsiveness for untethered, versatile control across different environments, opening up new actuation-modalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号