首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1975篇
  免费   83篇
  国内免费   16篇
电工技术   44篇
综合类   7篇
化学工业   457篇
金属工艺   45篇
机械仪表   59篇
建筑科学   74篇
矿业工程   5篇
能源动力   116篇
轻工业   139篇
水利工程   18篇
石油天然气   15篇
无线电   187篇
一般工业技术   448篇
冶金工业   153篇
原子能技术   13篇
自动化技术   294篇
  2024年   8篇
  2023年   26篇
  2022年   57篇
  2021年   81篇
  2020年   58篇
  2019年   52篇
  2018年   95篇
  2017年   66篇
  2016年   66篇
  2015年   46篇
  2014年   72篇
  2013年   138篇
  2012年   81篇
  2011年   102篇
  2010年   92篇
  2009年   89篇
  2008年   94篇
  2007年   96篇
  2006年   64篇
  2005年   62篇
  2004年   41篇
  2003年   47篇
  2002年   29篇
  2001年   29篇
  2000年   19篇
  1999年   31篇
  1998年   42篇
  1997年   28篇
  1996年   29篇
  1995年   28篇
  1994年   26篇
  1993年   23篇
  1992年   18篇
  1991年   21篇
  1990年   10篇
  1989年   15篇
  1988年   9篇
  1987年   17篇
  1986年   15篇
  1985年   18篇
  1984年   14篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1980年   13篇
  1979年   15篇
  1978年   9篇
  1977年   14篇
  1976年   11篇
  1975年   4篇
排序方式: 共有2074条查询结果,搜索用时 15 毫秒
991.
A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D /I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.  相似文献   
992.
A recently developed electrohydrodynamic printing method is described that can be used to create ordered structures and complex patterns using coarse processing needles and two polymeric materials. The results highlight the method's potential for direct 3D writing of biomedical polymers and composites for a variety of biomedical applications.

  相似文献   

993.
Electrospinning is a relatively unsophisticated technique for generating continuous fibers whose diameters can approach nanoscale dimensions. In coaxial electrospinning, two different liquids can be spun, one inside the other, to produce a composite fiber with a core-sheath structure. We prepared dual-core fibers consisting of poly vinyl-pyrrolidone sheaths and cores of the short-pitched chiral nematic mixture CB15:E9. The flow rates, polymer concentration, and applied voltage were optimized prior to fiber production. The fibers were deposited as uniform nonwoven mats that displayed selective reflection of visible light from the blue phase of the confined chiral liquid crystal. These reflections are both temperature dependent and reversible and such mats offer potential as flexible sensors.  相似文献   
994.
The members of the IgLON superfamily of cell adhesion molecules facilitate fundamental cellular communication during brain development, maintain functional brain circuitry, and are associated with several neuropsychiatric disorders such as depression, autism, schizophrenia, and intellectual disabilities. Usage of alternative promoter-specific 1a and 1b mRNA isoforms in Lsamp, Opcml, Ntm, and the single promoter of Negr1 in the mouse and human brain has been previously described. To determine the precise spatiotemporal expression dynamics of Lsamp, Opcml, Ntm isoforms, and Negr1, in the developing brain, we generated isoform-specific RNA probes and carried out in situ hybridization in the developing (embryonic, E10.5, E11.5, 13.5, 17; postnatal, P0) and adult mouse brains. We show that promoter-specific expression of IgLONs is established early during pallial development (at E10.5), where it remains throughout its differentiation through adulthood. In the diencephalon, midbrain, and hindbrain, strong expression patterns are initiated a few days later and begin fading after birth, being only faintly expressed during adulthood. Thus, the expression of specific IgLONs in the developing brain may provide the means for regionally specific functionality as well as for specific regional vulnerabilities. The current study will therefore improve the understanding of how IgLON genes are implicated in the development of neuropsychiatric disorders.  相似文献   
995.
In recent times, food safety has become a topic of debate as the foodborne diseases triggered by chemical and biological contaminants affect human health and the food industry’s profits. Though conventional analytical instrumentation-based food sensors are available, the consumers did not appreciate them because of the drawbacks of complexity, greater number of analysis steps, expensive enzymes, and lack of portability. Hence, designing easy-to-use tests for the rapid analysis of food contaminants has become essential in the food industry. Under this context, electrochemical biosensors have received attention among researchers as they bear the advantages of operational simplicity, portability, stability, easy miniaturization, and low cost. Two-dimensional (2D) nanomaterials have a larger surface area to volume compared to other dimensional nanomaterials. Hence, researchers nowadays are inclined to develop 2D nanomaterials-based electrochemical biosensors to significantly improve the sensor’s sensitivity, selectivity, and reproducibility while measuring the food toxicants. In the present review, we compile the contribution of 2D nanomaterials in electrochemical biosensors to test the food toxicants and discuss the future directions in the field. Further, we describe the types of food toxicity, methodologies quantifying food analytes, how the electrochemical food sensor works, and the general biomedical properties of 2D nanomaterials.  相似文献   
996.
The present research work deals with the development of a novel polymer composite for brake pad applications. The composite that was used consists of epoxy resin, carbon fibre and carbon nanotubes in varying weight percentage. The tribological performance of three different samples was tested using a pin-on-disc under dry contact condition. The results indicated that the sample filled with short carbon fibres (SCF), and multi-walled carbon nanotube (MWCNT) had superior performance. Reduction in wear rate was observed due to synergism between SCF and MWCNT as compared to SCF only. Scanning electron microscopy was subsequently performed on all samples. The micrographs show changes in the structural formation after the incorporation of SCFs and MWCNT. This increased composite structural strength and explains why SCF and MWCNT’s hybrid-filled composite material has better tribological properties.  相似文献   
997.
The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at ?80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.  相似文献   
998.
Nickel-cobalt alloys were deposited from sulfate electrolyte with oxalic, malonic and succinic acids as additives and their microstructure and mechanical properties were studied. The crystal structure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. The crystal structure and surface morphology analysis showed that the addition of dicarboxylic acid leads to (2 0 0) crystal face and the surface were more compact and uniform due to the grain refining. Ni60-Co40 alloy was achieved when succinic acid is used as additive.  相似文献   
999.
Self-assembled InAs quantum dots (QDs) were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs). The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.  相似文献   
1000.
A process for purifying aqueous solutions containing macromolecular proteins such as bovine serum albumin (BSA), egg albumin (EA), pepsin, and trypsin has been investigated. Protein removal from food and biorelated industrial waste streams are gaining increased visibility due to environmental concern and saving precious materials. Ultrafiltration (UF) processes are largely being applied for protein separation from aqueous streams. In this work, an attempt has been made to separate the valuable proteins using cellulose acetate (CA)/sulfonated poly(ether imide) (SPEI) blend UF membranes prepared in the absence and presence of the additive, polyethyleneglycol (PEG600) in various compositions. The blend membranes were subjected to the determination of pore statistics and molecular weight cut‐off (MWCO). Porosity and pore size of the membranes increased with increasing concentrations of SPEI and PEG600 in the casting solution. Similarly, the MWCOs of the blend membranes ranged from 20 to greater than 69 kDa, depending on the various polymer blend compositions. Surface morphology of the blend membranes were analyzed using scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of proteins. On increasing the concentration of SPEI and PEG600, the rejection of proteins is decreasing, whereas the permeate flux has an increasing trend. The effect of hydrophilicity of SPEI on fouling of protein for CA/SPEI blend membranes was also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号