首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   20篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   56篇
金属工艺   5篇
机械仪表   7篇
建筑科学   15篇
能源动力   1篇
轻工业   42篇
石油天然气   2篇
无线电   5篇
一般工业技术   32篇
冶金工业   11篇
自动化技术   17篇
  2023年   10篇
  2022年   2篇
  2021年   12篇
  2020年   9篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   13篇
  2015年   12篇
  2014年   18篇
  2013年   15篇
  2012年   20篇
  2011年   17篇
  2010年   8篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1992年   1篇
  1977年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
191.
Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.  相似文献   
192.
193.
Objective

To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition.

Materials and methods

During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior–posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects.

Results

Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data.

Discussion

Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.

  相似文献   
194.
Artificial active matter often self-propels by creating gradients of one or more species or quantities. For chemical swimmers, most frequently either O2 or H+ that are created in certain catalytic reactions are causing the interfacial flows which drive the self-propulsion. While the palette of reactions is extending constantly, especially toward more bio-compatible fuels, the depletion of species is often overlooked. Here, the photodeposition of metal species on BiVO4 micro swimmers is considered. During the photodeposition reaction, metal ions are removed from the solution creating a depleted region around the particle. The ability of this depletion to drive active motion of artificial micro swimmers, as well as the influences of different metal ions and counter ions on the motion are investigated and cross compared.  相似文献   
195.
This study investigates the effects of aging on the physical and mechanical properties of commercially available acrylonitrile-butadiene rubber (NBR) gaskets while maintaining their original geometry. Thermo-oxidative cycles with 10 and 70 mm in length specimens were conducted from 80 to 170°C up to 180 days. The samples were analyzed employing compression set (CS), hardness, indentation modulus, cross-link density, total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetry. The results showed that longer specimens presented better resistance to thermo-oxidative aging. Indentation results indicated regular oxygen permeability into the entire samples up to 110°C, while at higher temperatures, limited diffusion oxidation (DLO) effects promoted non-uniform aging. Time–temperature superposition (TTS) and Arrhenius methods were applied to predict the specimens' lifetime using CS as a failure criterion. Activation energies for 10 and 70 mm samples were 68.74 and 43.63 kJ mol−1, respectively. Thus, the 70 mm specimen's lifetime was greater than 10 mm. For temperatures below ≈38°C, the response to the thermo-oxidative aging is independent of specimen length. Therefore, in determining the lifetime of gaskets with complex geometry, longer specimens are recommended to provide more reliable results than those suggested by the standards.  相似文献   
196.
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号