全文获取类型
收费全文 | 881篇 |
免费 | 25篇 |
国内免费 | 2篇 |
专业分类
电工技术 | 12篇 |
综合类 | 2篇 |
化学工业 | 198篇 |
金属工艺 | 50篇 |
机械仪表 | 40篇 |
建筑科学 | 17篇 |
能源动力 | 49篇 |
轻工业 | 63篇 |
水利工程 | 11篇 |
石油天然气 | 2篇 |
无线电 | 84篇 |
一般工业技术 | 206篇 |
冶金工业 | 33篇 |
原子能技术 | 2篇 |
自动化技术 | 139篇 |
出版年
2024年 | 20篇 |
2023年 | 16篇 |
2022年 | 42篇 |
2021年 | 42篇 |
2020年 | 35篇 |
2019年 | 28篇 |
2018年 | 45篇 |
2017年 | 38篇 |
2016年 | 36篇 |
2015年 | 23篇 |
2014年 | 37篇 |
2013年 | 75篇 |
2012年 | 56篇 |
2011年 | 64篇 |
2010年 | 34篇 |
2009年 | 46篇 |
2008年 | 44篇 |
2007年 | 32篇 |
2006年 | 28篇 |
2005年 | 14篇 |
2004年 | 14篇 |
2003年 | 18篇 |
2002年 | 9篇 |
2001年 | 7篇 |
2000年 | 10篇 |
1999年 | 11篇 |
1998年 | 1篇 |
1997年 | 10篇 |
1996年 | 9篇 |
1995年 | 5篇 |
1994年 | 9篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 4篇 |
1984年 | 5篇 |
1983年 | 2篇 |
1982年 | 6篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有908条查询结果,搜索用时 15 毫秒
101.
Md Yousof Ali Susoma Jannat Hyun Ah Jung Byung‐Sun Min Pradeep Paudel Jae Sue Choi 《Journal of Food Biochemistry》2018,42(1)
The aim of the present study was to investigate the hepatoprotective effects of different soluble fractions of methanolic derived Cassia obtusifolia seeds extract (COE) and its active components in tert‐butyl hydroperoxide (t‐BHP)‐induced oxidative stress in HepG2 cells. Among the tested fractions, the ethyl acetate (EtOAc) fraction was the most active hepatoprotective fraction. From the active EtOAc fraction, six anthraquinones (alaternin, emodin, aloe emodin, 2‐hydroxyemodin 1‐methyl ether, chryso‐obtusin‐2‐O‐β‐d ‐glucoside, and questin) and one naphthopyrone glycoside (cassiaside) were isolated. The cytotoxic effect in 200 µM t‐BHP‐induced HepG2 cells was inhibited by COE and their bioactive compounds. The protective effect of COE in 200 µM t‐BHP‐induced HepG2 cells may be associated with positive regulation of glutathione (GSH) and decreased in reactive oxygen species (ROS) formation of their bioactive compounds. The increased ROS and decreased GSH levels observed in t‐BHP‐treated HepG2 cells were ameliorated by pretreatment with cassiaside, alaternin, and aloe emodin, indicating that the hepatoprotective effects of these major constituents are mediated by induction of cellular defense against oxidative stress. Overall, COE displayed a significant cytoprotective effect against oxidative stress, which may most likely be because of active compounds like cassiaside, alaternin, and aloe emodin in COE, which leads to maintenance of the normal redox status of cells.
Practical applications
The dried and roasted seeds of Cassia obtusifolia are commonly consumed as brew tea and medicinal foods in Korea. The seeds have multiple therapeutic actions related to the treatment of liver disease, dementia, diabetes, eye inflammation, photophobia and lacrimation, dysentery, headache, as well as dizziness. The present study demonstrates the hepatoprotective effect through prevention of oxidative stress, suggesting that C. obtusifolia and its constituents may have beneficial effects in preventing hepatic diseases. 相似文献102.
Rahul S. Kalhapure Pradeep Bolla Delfina C. Dominguez Amit Dahal Sai H.S. Boddu Jwala Renukuntla 《IET nanobiotechnology / IET》2018,12(6):836
Silver (Ag) complexes of drugs and their nanosystems have great potential as antibacterials. Recently, an Ag complex of furosemide (Ag–FSE) has shown to be a promising antimicrobial. However, poor solubility of Ag–FSE could hamper its introduction into clinics. Therefore, the authors developed a nanosuspension of Ag–FSE (Ag–FSE_NS) for its solubility and antibacterial activity enhancement. The aim of this study was to introduce a novel nanoantibiotic with enhanced antibacterial efficacy. Ag–FSE_NS was prepared by precipitation–ultrasonication technique. Size, polydispersity index (PI) and zeta potential (ZP) of prepared Ag–FSE_NS were measured by dynamic light scattering, whereas surface morphology was determined using scanning electron microscopy (SEM). In vitro antibacterial activity was evaluated against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa using broth microdilution method. Size, PI and ZP of optimised Ag–FSE_NS1 were 191.2 ± 19.34 nm, 0.465 ± 0.059 and −55.7 ± 8.18 mV, respectively. SEM revealed that Ag–FSE_NS1 particles were rod or needle‐like with smooth surfaces. Saturation solubility of Ag–FSE in NS increased eight‐fold than pure Ag–FSE. Ag–FSE_NS1 exhibited two‐fold and eight‐fold enhancements in activity against E. coli and S. aureus, respectively. The results obtained showed that developed Ag–FSE_NS1 holds a promise as a topical antibacterial.Inspec keywords: nanomedicine, nanofabrication, light scattering, surface morphology, silver, particle size, solubility, suspensions, scanning electron microscopy, electrokinetic effects, drugs, biomedical materials, antibacterial activity, microorganisms, nanoparticles, drug delivery systems, transmission electron microscopyOther keywords: saturation solubility, topical antibacterial, size 171.86 nm to 210.54 nm, voltage ‐47.52 mV to ‐63.88 mV, Ag, broth microdilution method, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, SEM, scanning electron microscopy, surface morphology, dynamic light scattering, particle size, polydispersity index, precipitation–ultrasonication technique, nanoantibiotic, nanosuspension, furosemide, nanosystems, drugs, Ag–FSE_NS preparation, in vitro antibacterial activity, pure Ag–FSE, Ag–FSE_NS1 particles, optimised Ag–FSE_NS1, zeta potential, enhanced antibacterial efficacy, antibacterials 相似文献
103.
Grinding force and grinding energy are the significant factors associated with the grinding process. The higher heat at the contact zone leads to dulling grits and frequent breakage of grit particle resulting in increase of the grinding force. This problem can be met by bringing down the temperature at the contact zone. The oil-based coolant fails to eliminate the heat at the grinding zone. Hence, the approach of cryogenic coolant is required for this problem. In the present study, an experimental work has been made on the grinding Ti-6Al-4V under cryogenic carbon dioxide (CO2) and conventional coolant condition. Grinding experiments were performed with an electroplated cubic boron nitride (CBN) wheel, with two factors such as nozzle inclination angle and depth of cut (DOC). The output response parameters considered were surface roughness (Ra), tangential force (Ft), normal force (Fn) grinding zone temperature (GT), and specific energy. The effect of CO2 and wet coolant on the chip morphology and surface modification in grinding Ti-6Al-4V was analyzed. The experimental result indicates when cryogenic CO2 was used as a coolant the Ft is reduced from 3 to 21% and 2 to 99% in Fn. The Ra was reduced by 333% and GT by 48% over conventional grinding. 相似文献
104.
High oxygen permeability with optimal selectivity of the membrane is required for advancement in air separation membrane technology. Zeolite 4A-PDMS composite membranes were prepared by incorporation of Zeolite 4A nanoscale crystals during the polymerization process of PDMS membrane using toluene and n-heptane solvents, and their oxygen gas permeability and selectivity were explored. Small angle neutron scattering (SANS) technique was further used to study the polymer chain conformation and structure of membranes influenced by Zeolite 4A loading. The intersegmental distance between polymer chains and polymer chain aggregation or clustering were found to be increased on increasing the Zeolite 4A content in the membranes. Increment in the O2 permeability and O2/N2 selectivity were observed for both type of membranes (toluene and n-heptane) with 1 wt% Zeolite 4A loading. The best performance result with O2/N2 selectivity of 2.6, and O2 permeability of 1052 Barrer was exhibited by PDMS/toluene membrane loaded with 1 wt% Zeolite 4A. The PDMS/toluene membranes with 10 wt% Zeolite 4A loading exhibited increased O2 permeability of 1245 Barrer with a fair O2/N2selectivity of ~1.7, while the PDMS/n-heptane membrane with the same loading exhibited excellent O2 permeability of 6773 Barrer but lesser O2/N2 selectivity of ~1.2. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48047. 相似文献
105.
C. Chandrasekhara Sastry P. Hariharan M. Pradeep Kumar 《Materials and Manufacturing Processes》2019,34(7):814-831
In this research work, an attempt has been carried out to examine (investigate) and study the dry, wet and cryogenic boring of AA 7075 alloy, which is predominantly used in transport applications in defense (aeronautical parts), oceanic and automaker industries. To ensure direct supply of the coolant, and real-time measurement of cutting temperature a modified boring bar is used (modification is carried out using EDM to accommodate placement of a thermocouple to obtain real-time measurement of temperature readings during the boring cycle). It is observed that during cryogenic boring of AA 7075 alloy there is a considerable reduction in the cutting force (Fc), cutting temperature (Tc) and surface roughness (Ra) by 56.16%, 84.70%, 58.98% compared to dry boring and 48.43%, 80.70%, 34.70% compared to wet boring, respectively. Decrease in Fc and Tc leads to a reduction in high stresses at localized points during machining and in turn curtail wear in workpiece and tool. Lubrication provided by cryogenic fluids also plays a sizable role in reduction of Fc and Tc. Reduction in lower Fc and Tc has a glaring effect on the surface characteristics of the hole produced during the boring process. Tool wear is reduced in cryogenic boring by 36.96% and 17.57% compared to dry and wet boring, respectively. Taguchi and ANOVA was carried out which helped in determining feed as an important parameter with respect to Fc and Ra during boring of AA 7075 under dry, wet and cryogenic conditions whereas speed as an important parameter in determining Tc in dry and wet conditions and feed for Tc in cryogenic boring condition. TOPSIS analysis highlighted speed of 770 rpm and feed of 0.055 mm/min as the most closest to ideal solution for all three different cutting conditions. Surface morphology study after boring of AA 7075 highlighted better surface characteristics in cryogenic bored surface compared to dry and wet boring. Roughness measured in AFM for tool used in boring highlighted a decrease in 86.79% and 66.01% in cryogenic boring in juxtaposition with dry and wet boring, respectively. A surge in compressive residual stress is observed in cryogenic bored surface by 10.41% and 3.5% in juxtaposition with dry and wet boring, respectively, highlighting an abatement in tensile residual stress and better workpiece integrity as compared to dry and wet boring conditions. 相似文献
106.
The research work was carried out on the end milling of Al 6082-T6 alloy with cryogenic CO2, LN2 and wet conditions. The highest axial force (Fz), normal force (Fy) and feed force (Fx) values were recorded on cryogenic LN2 machining. Use of cryogenic LN2 helped to reduce the cutting temperatures up to 38.29% and 32.8% when compared with wet and cryogenic CO2 conditions, respectively. The conventional fluid coolant offered a better surface roughness value (Ra) over cryogenic coolants at a feed rate of 0.015 and 0.02 mm/tooth and cutting speed of 100 m/min. The workpiece surface quality degraded in cryogenic machining conditions during the slot end milling operation of aluminum alloy under the given machining parameters. 相似文献
107.
The static behavior of composites and sandwich plates in thermo-mechanical environment is investigated by a two dimensional (2D) FE model. An efficient higher-order zig-zag theory (HOZT) considering actual through-thickness temperature profile and a least square error (LSE) method to accurately predict the inter-laminar stresses is implemented in this model. The in-plane displacement field is obtained by superposing a cubically varying global displacement field on a zig-zag displacement field having different slopes at each layer. This plate theory represents parabolic through thickness variation of transverse shear stresses, which satisfy the inter-laminar continuity at the layer interfaces and zero transverse shear stress conditions at the top and bottom of the plate. In the present 2D finite element (FE) model, the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of C1 continuity associated with the above plate theory (HOZT). The accurate through-thickness distribution of temperature is obtained by using a linear zig-zag thermal lamination theory proposed by the authors by using the thermal conduction properties of different constituent layers in the thickness direction. The LSE method is applied at the postprocessing stage to accurately calculate the inter-laminar stresses by the 3D equilibrium equations of the plate problem, after in-plane stresses are calculated. The proposed combined FE model (HOZT+LSE) is implemented to analyze the static behavior of laminated composites and sandwich plates subjected to thermo-mechanical loadings. Many new results are also presented that should be useful for the future reference. 相似文献
108.
In this paper, the concept of application of morphological multistage watershed segmentation for detection of flaws in radiographic weld images is discussed. It is simple and intuitive and always produces a complete division of the image. The multistage watershed segmentation used here reduces the problem of over segmentation besides generating boundaries with very less deviation from their original position. Two-stage water segmentation is implemented here. At the first stage, watershed transform is applied to an X-ray image and the resultant mosaic image pattern is further thresholded by Otsu's thresholding method and converted into the binary image. Then, morphology and top-hat transformation is applied on binary image to separate partially overlapping objects. Euclidean distance map is calculated for each basin to label resultant segments uniquely and to separate ridges. This follows the second stage of watershed segmentation to obtain better-defined boundaries while removing over-segmented regions. Watershed segmentation algorithm has been able to detect flaws like slag inclusions and wormholes-type weld flaws. It shows all defects with reasonable accuracy having close contours. Similarly, small cavities are also highlighted successfully. 相似文献
109.
Effect of process parameters on impact strength of Al-7% Si alloy castings produced by VAEPC process
Sudhir Kumar Pradeep Kumar H. S. Shan 《The International Journal of Advanced Manufacturing Technology》2008,38(5-6):586-593
The castings produced by the evaporative pattern casting (EPC) process have blow holes. The blow holes in EPC castings are because of the non-escape of the gas produced as a result of burning of polystyrene pattern in the sand mold. To overcome the problem of blow holes, the EPC process is combined with the vacuum (V)- process. The vacuum applied to EPC mold draws the decomposed gases and improves the casting quality produced by the EPC process. The developed hybrid process has been termed as the vacuum assisted evaporative pattern casting (VAEPC) process. The objective of this paper to investigates the effect of process parameters, i.e, degree of vacuum, pouring temperature, grainfineness number, amplitude of vibration and time of vibration on the impact strength of Al-7% Si alloy castings in VAEPC process. In order to evaluate the effect of selected process parameters, the response surface methodology (RSM) is used to formulate a mathematical model which correlates the independent process parameters with the desired impact strength. The central composite rotatable design has been used to conduct the experiments. The results indicate that the impact strength decreases with increases in the grainfineness number and pouring temperature. Whereas, it has an inverse relationship with amplitude of vibration, time of vibration and degree of vacuum. The best value of impact strength (2.34 N/mm2) has been obtained at 400 mm Hg degree of vacuum imposed, 650°C as pouring temperature, 60 as sand grainfineness number, 460 μm as amplitude of vibration, and 70 s as time of vibration. 相似文献
110.
Pradeep Kumar Samantaroy Girija Suresh Nanda Gopala Krishna U. Kamachi Mudali 《Journal of Materials Engineering and Performance》2013,22(4):1041-1053
Nickel-based alloys are being considered as candidate materials for the storage of high level waste. In the present investigation, Alloy 600 was assessed by potentiodynamic anodic polarization technique for its corrosion behavior in the as-received, solution annealed, and sensitized condition in 3 M HNO3 and 3 M HNO3 containing simulated high level waste. From the results of the investigation, it was found that the solution annealed specimen possesses superior corrosion resistance compared to the as-received and sensitized specimen. Double loop electrochemical potentiokinetic reactivation test was carried out to study the degree of sensitization. The effect of different concentrations of chloride ions in 3 M HNO3 at 25 °C indicated tendency for pitting as the concentration of chloride ions was increased. Microstructural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. X-ray photoelectron spectroscopy study was carried out to investigate the passive film formed in 3 M HNO3 and 3 M HNO3 simulated high level waste. 相似文献