首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306944篇
  免费   4180篇
  国内免费   705篇
电工技术   6154篇
综合类   555篇
化学工业   45132篇
金属工艺   10312篇
机械仪表   8757篇
建筑科学   7776篇
矿业工程   862篇
能源动力   8565篇
轻工业   30660篇
水利工程   2531篇
石油天然气   3641篇
武器工业   8篇
无线电   39646篇
一般工业技术   58395篇
冶金工业   56705篇
原子能技术   5460篇
自动化技术   26670篇
  2021年   2246篇
  2019年   2143篇
  2018年   3611篇
  2017年   3454篇
  2016年   3543篇
  2015年   2545篇
  2014年   4444篇
  2013年   14281篇
  2012年   7375篇
  2011年   10128篇
  2010年   7910篇
  2009年   9143篇
  2008年   9620篇
  2007年   9605篇
  2006年   8524篇
  2005年   7899篇
  2004年   7766篇
  2003年   7511篇
  2002年   7340篇
  2001年   7547篇
  2000年   7209篇
  1999年   7551篇
  1998年   17667篇
  1997年   12812篇
  1996年   9696篇
  1995年   7788篇
  1994年   7134篇
  1993年   6837篇
  1992年   5222篇
  1991年   4994篇
  1990年   4876篇
  1989年   4689篇
  1988年   4594篇
  1987年   3818篇
  1986年   3940篇
  1985年   4651篇
  1984年   4211篇
  1983年   3949篇
  1982年   3532篇
  1981年   3698篇
  1980年   3403篇
  1979年   3360篇
  1978年   3174篇
  1977年   3767篇
  1976年   4799篇
  1975年   2733篇
  1974年   2623篇
  1973年   2637篇
  1972年   2195篇
  1971年   1924篇
排序方式: 共有10000条查询结果,搜索用时 349 毫秒
71.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
72.
Theoretical Foundations of Chemical Engineering - A technology for the demercaptanization of light hydrocarbon fractions and liquefied petroleum gas with 25% aqueous ammonia is proposed. One...  相似文献   
73.
Context and objective: The aim of this study was to develop, characterize and evaluate a mucoadhesive caplet resulting from a polymeric blend (polymeric caplet) for intravaginal anti-HIV-1 delivery.

Materials and methods: Poly(lactic-co-glycolic) acid, ethylcellulose, poly(vinylalcohol), polyacrylic acid and modified polyamide 6, 10 polymers were blended and compressed to a caplet-shaped device, with and without two model drugs 3′-azido-3′-deoxythymidine (AZT) and polystyrene sulfonate (PSS). Thermal analysis, infrared spectroscopy and microscopic analysis were carried out on the caplets employing temperature-modulated DSC (TMDSC), Fourier transform infra-red (FTIR) spectrometer and scanning electron microscope, respectively. In vitro and in vivo drug release analyses as well as the histopathological toxicity studies were carried out on the drug-loaded caplets. Furthermore, molecular mechanics (MM) simulations were carried out on the drug-loaded caplets to corroborate the experimental findings.

Results and discussion: There was a big deviation between the Tg of the polymeric caplet from the Tg's of the constituent polymers indicating a strong interaction between constituent polymers. FTIR spectroscopy confirmed the presence of specific ionic and non-ionic interactions within the caplet. A controlled near zero-order drug release was obtained for AZT (20 d) and PSS (28 d). In vivo results, i.e. the drug concentration in plasma ranged between 0.012–0.332?mg/mL and 0.009–0.256?mg/mL for AZT and PSS over 1–28 d.

Conclusion: The obtained results, which were corroborated by MM simulations, attested that the developed system has the potential for effective delivery of anti-HIV-agents.  相似文献   
74.
C-axis textured thin films of gallium-doped indium zinc oxide (GIZO) with a 2% ratio of Ga/Zn, were obtained via RF-magnetron sputtering with high transparency and electrical conductivity. A Box-Behnken response surface design was used to evaluate the effects of the deposition parameters (In2O3 target power, deposition time, and substrate temperature) on the chemical composition, optical, electrical, and structural properties of the GIZO films. The optical constants and the electrical properties were obtained using optical models. The GIZO stoichiometry, and therefore the In/Zn atomic ratio, affected the crystallinity, crystalline parameters, band gap, and charge carrier mobility of the GIZO films. The charge carrier density was related to the change in the crystalline parameters of the hexagonal structure and the In/Zn atomic ratio. The best electrical conductivity values (1.75?×?103 Ω?1 cm?1) were obtained for GIZO films with In/Zn ratio ≥?1. Several figures of merit (FOM) defined for the visible and solar regions were comparatively used to select the optimal In/Zn atomic ratio that provided the best balance between the conductivity and the transparency. The optimal In/Zn ratio was in a range of 0.85–0.90 for the GIZO films.  相似文献   
75.
Titania-based ceramics with adjustable anatase-rutile fractions were obtained by milling of anatase, quartz and corundum precursors, uniaxial pressing and firing at 1100?°C. The influence of silica and alumina, combined with milling time and compaction pressure, was studied by design of experiments. The L9 orthogonal array with a three-level noise factor was employed. Firing of pure titania at 1100?°C yielded complete anatase to rutile transformation (ART), whereas stabilized samples show that an optimum amount of 9% silica and 33% alumina reduces phase transformation to only about 5?wt% rutile. An extended correlation matrix combined with analysis of variance (ANOVA) was applied to assess the combined effects of quartz, alumina, milling time and uniaxial compressing pressure on relative density, and anatase to rutile transformation. Results show absence of ART after milling, and controlled partial conversion of anatase to rutile after firing. Very good fitting was obtained by multivariate analysis on considering first and second order terms for dependence on silica contents and interactions between silica and each of the remaining factors, including milling time. This empirical dependence could be interpreted on a sound physicochemical basis, allowing the prediction of suitable compositions and processing conditions to obtain rutile-free samples by conventional ceramic processing, and to design ceramic samples with controlled fractions of anatase and rutile.  相似文献   
76.
The consequences of high energy mechanical milling, microwave-assisted heating and rapid thermal cooling on magnetic ordering in polycrystalline CaCu3Ti4O12 cubic perovskite have been investigated by means of X-ray powder diffractometry (300?K), dc magnetization in field – cooled and zero – field cooled modes (H = 100?Oe and 1000?Oe, T?=?5–300?K) (MT curves) and MH loop characteristics (T?=?5?K and 300?K, Hmax = 70?kOe). The MT curves of unmilled and 16?h milled samples show pure antiferromagnetic and weak ferromagnetic ordering, respectively, 1?h and 6?h milled samples demonstrate the coexistence of both the phases while microwave-assisted and quenched samples exhibit classic antiferromagnetic transition and a low temperature paramagnetic–like contribution with different weights, well supported by the MH loop characteristics. The observed transformations in the magnetic ordering are attributed to the ball-milling induced stress which curtails hybridization of empty Ti-3d orbitals with Cu-3d and O-2p orbitals and secondary phase formation. Oxygen vacancies associated with bound magnetic polarons originate ferromagnetism in the milled samples while unpaired electrons inhabited at the empty sites are the cause of paramagnetic centers. The low-temperature Curie – tail in MT curve for quenched and microwave assisted samples is attributed to Ti3+ cations.  相似文献   
77.
78.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   
79.
80.
The data on the use of solar photovoltaic plants (PVPs) for providing a reliable and guaranteed power supply to telecommunication systems and cellular communication systems in the conditions prevalent in Uzbekistan are given. The research-based structures developed by OOO MIR SOLAR and the selection of PVP elements ensuring their reliable operation are described. The main influencing factors are discussed, and the use of effective combinations of different types of panels (from monocrystalline and polycrystalline silicon) and a specially developed controller are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号