全文获取类型
收费全文 | 28624篇 |
免费 | 289篇 |
国内免费 | 38篇 |
专业分类
电工技术 | 346篇 |
综合类 | 28篇 |
化学工业 | 4767篇 |
金属工艺 | 570篇 |
机械仪表 | 697篇 |
建筑科学 | 1179篇 |
矿业工程 | 136篇 |
能源动力 | 770篇 |
轻工业 | 2580篇 |
水利工程 | 330篇 |
石油天然气 | 136篇 |
无线电 | 2420篇 |
一般工业技术 | 4485篇 |
冶金工业 | 6543篇 |
原子能技术 | 229篇 |
自动化技术 | 3735篇 |
出版年
2023年 | 172篇 |
2022年 | 252篇 |
2021年 | 436篇 |
2020年 | 365篇 |
2019年 | 428篇 |
2018年 | 436篇 |
2017年 | 461篇 |
2016年 | 512篇 |
2015年 | 399篇 |
2014年 | 623篇 |
2013年 | 1538篇 |
2012年 | 980篇 |
2011年 | 1398篇 |
2010年 | 1013篇 |
2009年 | 1055篇 |
2008年 | 1184篇 |
2007年 | 1107篇 |
2006年 | 1001篇 |
2005年 | 960篇 |
2004年 | 769篇 |
2003年 | 732篇 |
2002年 | 730篇 |
2001年 | 496篇 |
2000年 | 472篇 |
1999年 | 530篇 |
1998年 | 1123篇 |
1997年 | 788篇 |
1996年 | 752篇 |
1995年 | 603篇 |
1994年 | 546篇 |
1993年 | 517篇 |
1992年 | 371篇 |
1991年 | 293篇 |
1990年 | 366篇 |
1989年 | 338篇 |
1988年 | 300篇 |
1987年 | 301篇 |
1986年 | 263篇 |
1985年 | 313篇 |
1984年 | 291篇 |
1983年 | 262篇 |
1982年 | 239篇 |
1981年 | 257篇 |
1980年 | 213篇 |
1979年 | 243篇 |
1978年 | 194篇 |
1977年 | 230篇 |
1976年 | 361篇 |
1975年 | 197篇 |
1974年 | 177篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Hyun-Ah Shin Mira Park Jasvinder Paul Banga Helen Lew 《International journal of molecular sciences》2022,23(10)
Orbital fibroblasts (OFs) in thyroid-associated ophthalmopathy (TAO) are differentiated from pre-adipocytes and mature adipocytes; increased lipid and fat expansion are the major characteristics of ophthalmic manifestations. Human placental mesenchymal stem cells (hPMSCs) were reported to immunomodulate pathogenesis and suppress adipogenesis in TAO OFs. Here, we prepared transforming growth factor β (TGFβ, 20 ng/mL)-treated hPMSCs (TGFβ-hPMSCs) in order to enhance anti-adipogenic effects in vitro and in TAO mice. TAO OFs were grown in a differentiation medium and then co-cultured with hPMSCs or TGFβ-hPMSCs. TAO OFs were analyzed via quantitative real-time polymerase chain reaction, Oil red O staining, and western blotting. The results showed that TGFβ-hPMSCs reduced the expression of adipogenic, lipogenic, and fibrotic genes better than hPMSCs in TAO OFs. Moreover, the adipose area decreased more in TAO mice injected with TGFβ-hPMSCs compared to those injected with hPMSCs or a steroid. Further, TGFβ-hPMSCs inhibited inflammation as effectively as a steroid. In conclusion, TGFβ-hPMSCs suppressed adipogenesis and lipogenesis in vitro and in TAO mice, and the effects were mediated by the SMAD 2/3 pathways. Furthermore, TGFβ-hPMSCs exhibited anti-inflammatory and anti-fibrotic functions, which suggests that they could be a new and safe method to promote the anti-adipogenic function of hPMSCs to treat TAO patients. 相似文献
992.
Mengfan Ding Haiqin Chen Renqiang Yu Reynolds Paul Ross Catherine Stanton Hao Zhang Bo Yang Wei Chen 《International journal of molecular sciences》2022,23(17)
The infant gut microbiota is critical for promoting and maintaining early-life health. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM) and infant and maternal feces. Eleven pregnant women were recruited successfully. HBM; infant feces during colostrum, transition, and mature stages; and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then, 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM and infant and maternal feces. Higher relative abundance of sIgA-uncoated Bifidobacterium was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated Faecalibacterium was found in maternal feces compared to HBM and infant feces. For bifidobacterial community, sIgA-coated and sIgA-uncoated B. longum subsp. infantis and B. pseudocatenulatum was dominant in infant feces and maternal feces, respectively. The relative abundance of sIgA-uncoated B. longum subsp. infantis was significantly higher in infant feces compared to that in maternal feces. For the Lactobacillus community, L. paragasseri and L. mucosae were dominant in infant and maternal feces, respectively. HBM and infant and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar composition of Bifidobacterium at species level. The same Bifidobacterium species could be detected both in sIgA-coated and -uncoated form. This article provided deeper understanding on the microbiota profile in HBM and infant and maternal feces. 相似文献
993.
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancers worldwide. More than half of patients with HNSCC eventually experience disease recurrence and/or metastasis, which can threaten their long-term survival. HNSCCs located in the oral cavity and larynx are usually associated with tobacco and/or alcohol use, whereas human papillomavirus (HPV) infection, particularly HPV16 infection, is increasingly recognized as a cause of oropharyngeal HNSCC. Despite clinical, histologic, and molecular differences between HPV-positive and HPV-negative HNSCCs, current treatment approaches are the same. For recurrent disease, these strategies include chemotherapy, immunotherapy with PD-1-inhibitors, or a monoclonal antibody, cetuximab, that targets epidermal growth factor; these therapies can be administered either as single agents or in combination. However, these treatment strategies carry a high risk of toxic side effects; therefore, more effective and less toxic treatments are needed. The landscape of HNSCC therapy is changing significantly; numerous clinical trials are underway to test novel therapeutic options like adaptive cellular therapy, antibody-drug conjugates, new targeted therapy agents, novel immunotherapy combinations, and therapeutic vaccines. This review helps in understanding the various developments in HNSCC therapy and sheds light on the path ahead in terms of further research in this field. 相似文献
994.
Mauro Giuffr Silvia Gazzin Caterina Zoratti John Paul Llido Giuseppe Lanza Claudio Tiribelli Rita Moretti 《International journal of molecular sciences》2022,23(24)
Celiac disease (CD) is a complex multi-organ disease with a high prevalence of extra-intestinal involvement, including neurological and psychiatric manifestations, such as cerebellar ataxia, peripheral neuropathy, epilepsy, headache, cognitive impairment, and depression. However, the mechanisms behind the neurological involvement in CD remain controversial. Recent evidence shows these can be related to gluten-mediated pathogenesis, including antibody cross-reaction, deposition of immune-complex, direct neurotoxicity, and in severe cases, vitamins or nutrients deficiency. Here, we have summarized new evidence related to gut microbiota and the so-called “gut-liver-brain axis” involved in CD-related neurological manifestations. Additionally, there has yet to be an agreement on whether serological or neurophysiological findings can effectively early diagnose and properly monitor CD-associated neurological involvement; notably, most of them can revert to normal with a rigorous gluten-free diet. Moving from a molecular level to a symptom-based approach, clinical, serological, and neurophysiology data might help to disentangle the many-faceted interactions between the gut and brain in CD. Eventually, the identification of multimodal biomarkers might help diagnose, monitor, and improve the quality of life of patients with “neuroCD”. 相似文献
995.
Bimala Malla Agustin Liotta Helena Bros Rebecca Ulshfer Friedemann Paul Anja E. Hauser Raluca Niesner Carmen Infante-Duarte 《International journal of molecular sciences》2022,23(3)
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria. 相似文献
996.
Seung-Keun Hong Dmytro Starenki Oleta T. Johnson Jason E. Gestwicki Jong-In Park 《International journal of molecular sciences》2022,23(3)
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the RET proto-oncogene. We previously demonstrated that depletion of the mitochondrial molecular chaperone, mortalin, can effectively suppress human MTC cells in culture and in mouse xenografts, by disrupting mitochondrial bioenergetics and subsequently inducing apoptosis and RET downregulation. Similar effects were induced by MKT-077, a water-soluble rhodocyanine dye analog known to inhibit mortalin, but with notable toxicity in animals. These observations led us to evaluate recently developed MKT-077 analogs that exhibited higher selectivity to HSP70 proteins and improved bioavailability. We validated the MTC cell-suppressive effects of mortalin depletion in three-dimensional cultures of the human MTC lines, TT, and MZ-CRC-1, and then evaluated different MKT-077 analogs in two- and three-dimensional cell cultures, to show that the MKT-077 analogs, JG-98 and JG-194, effectively and consistently inhibited propagation of TT and MZ-CRC-1 cells in these cultures. Of note, these compounds also effectively suppressed the viability of TT and MZ-CRC-1 progenies resistant to vandetanib and cabozantinib. Moreover, JG-231, an analog with improved microsomal stability, consistently suppressed TT and MZ-CRC-1 xenografts in mice. These data suggest that mortalin inhibition may have therapeutic potential for MTC. 相似文献
997.
Sulaimon Idowu Paul P. Bertrand Anna K. Walduck 《International journal of molecular sciences》2022,23(5)
Gastric cancer represents a significant disease burden worldwide. The factors that initiate cancer are not well understood. Chronic inflammation such as that triggered by H. pylori infection is the most significant cause of gastric cancer. In recent years, organoid cultures developed from human and animal adult stem cells have facilitated great advances in our understanding of gastric homeostasis. Organoid models are now being exploited to investigate the role of host genetics and bacterial factors on proliferation and DNA damage in gastric stem cells. The impact of a chronic inflammatory state on gastric stem cells and the stroma has been less well addressed. This review discusses what we have learned from the use of organoid models to investigate cancer initiation, and highlights questions on the contribution of the microbiota, chronic inflammatory milieu, and stromal cells that can now be addressed by more complex coculture models. 相似文献
998.
Paul R. Hollis Robert J. Mobley Jyoti Bhuju Amy N. Abell Carrie Hayes Sutter Thomas R. Sutter 《International journal of molecular sciences》2022,23(17)
Cytochrome P4501B1 (CYP1B1) is elevated in breast cancer. Studies indicate a relationship between CYP1B1 and aggressive cancer phenotypes. Here, we report on in vitro studies in triple-negative breast cancer cell lines, where knockdown (KD) of CYP1B1 was used to determine the influence of its expression on invasive cell phenotypes. CYP1B1 KD in MDA-MB-231 cells resulted in the loss of mesenchymal morphology, altered expression of epithelial–mesenchymal genes, and increased claudin (CLDN) RNA and protein. CYP1B1 KD cells had increased cell-to-cell contact and paracellular barrier function, a reduced rate of cell proliferation, abrogation of migratory and invasive activity, and diminished spheroid formation. Analysis of clinical breast cancer tumor samples revealed an association between tumors exhibiting higher CYP1B1 RNA levels and diminished overall and disease-free survival. Tumor expression of CYP1B1 was inversely associated with CLDN7 expression, and CYP1B1HI/CLDN7LOW identified patients with lower median survival. Cells with CYP1B1 KD had an enhanced chemosensitivity to paclitaxel, 5-fluorouracil, and cisplatin. Our findings that CYP1B1 KD can increase chemosensitivity points to therapeutic targeting of this enzyme. CYP1B1 inhibitors in combination with chemotherapeutic drugs may provide a novel targeted and effective approach to adjuvant or neoadjuvant therapy against certain forms of highly metastatic breast cancer. 相似文献
999.
Laura K. Finnegan Naomi Chadderton Paul F. Kenna Arpad Palfi Michael Carty Andrew G. Bowie Sophia Millington-Ward G. Jane Farrar 《International journal of molecular sciences》2022,23(3)
The challenge of developing gene therapies for genetic forms of blindness is heightened by the heterogeneity of these conditions. However, mechanistic commonalities indicate key pathways that may be targeted in a gene-independent approach. Mitochondrial dysfunction and axon degeneration are common features of many neurodegenerative conditions including retinal degenerations. Here we explore the neuroprotective effect afforded by the absence of sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1), a prodegenerative NADase, in a rotenone-induced mouse model of retinal ganglion cell loss and visual dysfunction. Sarm1 knockout mice retain visual function after rotenone insult, displaying preservation of photopic negative response following rotenone treatment in addition to significantly higher optokinetic response measurements than wild type mice following rotenone. Protection of spatial vision is sustained over time in both sexes and is accompanied by increased RGC survival and additionally preservation of axonal density in optic nerves of Sarm1−/− mice insulted with rotenone. Primary fibroblasts extracted from Sarm1−/− mice demonstrate an increased oxygen consumption rate relative to those from wild type mice, with significantly higher basal, maximal and spare respiratory capacity. Collectively, our data indicate that Sarm1 ablation increases mitochondrial bioenergetics and confers histological and functional protection in vivo in the mouse retina against mitochondrial dysfunction, a hallmark of many neurodegenerative conditions including a variety of ocular disorders. 相似文献
1000.
Sebastian Kummer Susanne Rinn Gunnar Seemann Nadine Bachmann Katherine Timothy Paul S. Thornton Frank Pillekamp Ertan Mayatepek Carsten Bergmann Thomas Meissner Niels Decher 《International journal of molecular sciences》2022,23(15)
The voltage-dependent L-type calcium channel isoform CaV1.2 is critically involved in many physiological processes, e.g., in cardiac action potential formation, electromechanical coupling and regulation of insulin secretion by beta cells. Gain-of-function mutations in the calcium voltage-gated channel subunit alpha 1 C (CACNA1C) gene, encoding the CaV1.2 α1-subunit, cause Timothy syndrome (TS), a multisystemic disorder that includes autism spectrum disorders and long QT (LQT) syndrome. Strikingly, TS patients frequently suffer from hypoglycemia of yet unproven origin. Using next-generation sequencing, we identified a novel heterozygous CACNA1C mutation in a patient with congenital hyperinsulinism (CHI) and associated hypoglycemic episodes. We characterized the electrophysiological phenotype of the mutated channel using voltage-clamp recordings and in silico action potential modeling experiments. The identified CaV1.2L566P mutation causes a mixed electrophysiological phenotype of gain- and loss-of-function effects. In silico action potential modeling supports that this mixed electrophysiological phenotype leads to a tissue-specific impact on beta cells compared to cardiomyocytes. Thus, CACNA1C variants may be associated with non-syndromic hyperinsulinemic hypoglycemia without long-QT syndrome, explained by very specific electrophysiological properties of the mutated channel. We discuss different biochemical characteristics and clinical impacts of hypoglycemia in the context of CACNA1C variants and show that these may be associated with significant morbidity for Timothy Syndrome patients. Our findings underline that the potential of hypoglycemia warrants careful attention in patients with CACNA1C variants, and such variants should be included in the differential diagnosis of non-syndromic congenital hyperinsulinism. 相似文献