首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27618篇
  免费   181篇
  国内免费   941篇
电工技术   437篇
综合类   166篇
化学工业   2888篇
金属工艺   1116篇
机械仪表   1536篇
建筑科学   1361篇
矿业工程   673篇
能源动力   183篇
轻工业   5609篇
水利工程   490篇
石油天然气   530篇
武器工业   109篇
无线电   1589篇
一般工业技术   9952篇
冶金工业   530篇
原子能技术   242篇
自动化技术   1329篇
  2021年   77篇
  2018年   38篇
  2016年   46篇
  2015年   71篇
  2014年   101篇
  2013年   126篇
  2012年   2869篇
  2011年   3711篇
  2010年   768篇
  2009年   329篇
  2008年   2271篇
  2007年   2224篇
  2006年   1836篇
  2005年   1699篇
  2004年   1376篇
  2003年   1172篇
  2002年   1050篇
  2001年   948篇
  2000年   921篇
  1999年   624篇
  1998年   370篇
  1997年   373篇
  1996年   341篇
  1995年   283篇
  1994年   311篇
  1993年   215篇
  1992年   306篇
  1991年   288篇
  1990年   299篇
  1989年   317篇
  1988年   228篇
  1987年   290篇
  1986年   303篇
  1985年   264篇
  1984年   281篇
  1983年   261篇
  1982年   276篇
  1981年   226篇
  1980年   202篇
  1979年   134篇
  1978年   114篇
  1977年   46篇
  1976年   55篇
  1975年   50篇
  1974年   50篇
  1973年   66篇
  1965年   57篇
  1964年   55篇
  1956年   45篇
  1955年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Cashier workplaces recently put into service in self-service shops of a retail company provide a face-to-face position of two cashiers. These twin-checkouts involve both traditional goods handling from the front to the rear as well as a reverse technique - i e, forward operation from behind. By means of different methods they have been analysed from an ergonomics point of view and evaluated in respect of operators' workload resulting from the specific layout. The results support the conclusion that the new 'backward' system and twin-checkouts are not inferior to traditional single checkouts. On the contrary, a working technique where the arm moves from behind to the front involves a better approach to accounting for physiological characteristics and obviously allows a better fitting of the task of operators.  相似文献   
122.
Meta-modeling has become a crucial tool in solving expensive optimization problems. Much of the work in the past has focused on finding a good regression method to model the fitness function. Examples include classical linear regression, splines, neural networks, Kriging and support vector regression. This paper specifically draws attention to the fact that assessing model accuracy is a crucial aspect in the meta-modeling framework. Resampling strategies such as cross-validation, subsampling, bootstrapping, and nested resampling are prominent methods for model validation and are systematically discussed with respect to possible pitfalls, shortcomings, and specific features. A survey of meta-modeling techniques within evolutionary optimization is provided. In addition, practical examples illustrating some of the pitfalls associated with model selection and performance assessment are presented. Finally, recommendations are given for choosing a model validation technique for a particular setting.  相似文献   
123.
As heterogeneous data from different sources are being increasingly linked, it becomes difficult for users to understand how the data are connected, to identify what means are suitable to analyze a given data set, or to find out how to proceed for a given analysis task. We target this challenge with a new model-driven design process that effectively codesigns aspects of data, view, analytics, and tasks. We achieve this by using the workflow of the analysis task as a trajectory through data, interactive views, and analytical processes. The benefits for the analysis session go well beyond the pure selection of appropriate data sets and range from providing orientation or even guidance along a preferred analysis path to a potential overall speedup, allowing data to be fetched ahead of time. We illustrate the design process for a biomedical use case that aims at determining a treatment plan for cancer patients from the visual analysis of a large, heterogeneous clinical data pool. As an example for how to apply the comprehensive design approach, we present Stack'n'flip, a sample implementation which tightly integrates visualizations of the actual data with a map of available data sets, views, and tasks, thus capturing and communicating the analytical workflow through the required data sets.  相似文献   
124.
We present a process to automatically generate three-dimensional mesh representations of the complex, arborized cell membrane surface of cortical neurons (the principal information processing cells of the brain) from nonuniform morphological measurements. Starting from manually sampled morphological points (3D points and diameters) from neurons in a brain slice preparation, we construct a polygonal mesh representation that realistically represents the continuous membrane surface, closely matching the original experimental data. A mapping between the original morphological points and the newly generated mesh enables simulations of electrophysiolgical activity to be visualized on this new membrane representation. We compare the new mesh representation with the state of the art and present a series of use cases and applications of this technique to visualize simulations of single neurons and networks of multiple neurons.  相似文献   
125.
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.  相似文献   
126.
Extreme learning machine for regression and multiclass classification   总被引:13,自引:0,他引:13  
Due to the simplicity of their implementations, least square support vector machine (LS-SVM) and proximal support vector machine (PSVM) have been widely used in binary classification applications. The conventional LS-SVM and PSVM cannot be used in regression and multiclass classification applications directly, although variants of LS-SVM and PSVM have been proposed to handle such cases. This paper shows that both LS-SVM and PSVM can be simplified further and a unified learning framework of LS-SVM, PSVM, and other regularization algorithms referred to extreme learning machine (ELM) can be built. ELM works for the "generalized" single-hidden-layer feedforward networks (SLFNs), but the hidden layer (or called feature mapping) in ELM need not be tuned. Such SLFNs include but are not limited to SVM, polynomial network, and the conventional feedforward neural networks. This paper shows the following: 1) ELM provides a unified learning platform with a widespread type of feature mappings and can be applied in regression and multiclass classification applications directly; 2) from the optimization method point of view, ELM has milder optimization constraints compared to LS-SVM and PSVM; 3) in theory, compared to ELM, LS-SVM and PSVM achieve suboptimal solutions and require higher computational complexity; and 4) in theory, ELM can approximate any target continuous function and classify any disjoint regions. As verified by the simulation results, ELM tends to have better scalability and achieve similar (for regression and binary class cases) or much better (for multiclass cases) generalization performance at much faster learning speed (up to thousands times) than traditional SVM and LS-SVM.  相似文献   
127.
Recommender systems suggest a few items from many possible choices to the users by understanding their past behaviors. In these systems, the user behaviors are influenced by the hidden interests of the users. Learning to leverage the information about user interests is often critical for making better recommendations. However, existing collaborative-filtering-based recommender systems are usually focused on exploiting the information about the user's interaction with the systems; the information about latent user interests is largely underexplored. To that end, inspired by the topic models, in this paper, we propose a novel collaborative-filtering-based recommender system by user interest expansion via personalized ranking, named iExpand. The goal is to build an item-oriented model-based collaborative-filtering framework. The iExpand method introduces a three-layer, user-interests-item, representation scheme, which leads to more accurate ranking recommendation results with less computation cost and helps the understanding of the interactions among users, items, and user interests. Moreover, iExpand strategically deals with many issues that exist in traditional collaborative-filtering approaches, such as the overspecialization problem and the cold-start problem. Finally, we evaluate iExpand on three benchmark data sets, and experimental results show that iExpand can lead to better ranking performance than state-of-the-art methods with a significant margin.  相似文献   
128.
Hierarchical streamline bundles   总被引:2,自引:0,他引:2  
Effective 3D streamline placement and visualization play an essential role in many science and engineering disciplines. The main challenge for effective streamline visualization lies in seed placement, i.e., where to drop seeds and how many seeds should be placed. Seeding too many or too few streamlines may not reveal flow features and patterns either because it easily leads to visual clutter in rendering or it conveys little information about the flow field. Not only does the number of streamlines placed matter, their spatial relationships also play a key role in understanding the flow field. Therefore, effective flow visualization requires the streamlines to be placed in the right place and in the right amount. This paper introduces hierarchical streamline bundles, a novel approach to simplifying and visualizing 3D flow fields defined on regular grids. By placing seeds and generating streamlines according to flow saliency, we produce a set of streamlines that captures important flow features near critical points without enforcing the dense seeding condition. We group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through clustered yet not cluttered display. This selective visualization strategy effectively reduces visual clutter while accentuating visual foci, and therefore is able to convey the desired insight into the flow data.  相似文献   
129.
Crease surfaces describe extremal structures of 3D scalar fields. We present a new region-growing-based approach to the meshless extraction of adaptive nonmanifold valley and ridge surfaces that overcomes limitations of previous approaches by decoupling point seeding and triangulation of the surface. Our method is capable of extracting valley surface skeletons as connected minimum structures. As our algorithm is inherently mesh-free and curvature adaptive, it is suitable for surface construction in fields with an arbitrary neighborhood structure. As an application for insightful visualization with valley surfaces, we choose a low frequency acoustics simulation. We use our valley surface construction approach to visualize the resulting complex-valued scalar pressure field for arbitrary frequencies to identify regions of sound cancellation. This provides an expressive visualization of the topology of wave node and antinode structures in simulated acoustics.  相似文献   
130.
Many flow visualization techniques, especially integration-based methods, are problematic when the measured data exhibit noise and discretization issues. Particularly, this is the case for flow-sensitive phase-contrast magnetic resonance imaging (PC-MRI) data sets which not only record anatomic information, but also time-varying flow information. We propose a novel approach for the visualization of such data sets using integration-based methods. Our ideas are based upon finite-time Lyapunov exponents (FTLE) and enable identification of vessel boundaries in the data as high regions of separation. This allows us to correctly restrict integration-based visualization to blood vessels. We validate our technique by comparing our approach to existing anatomy-based methods as well as addressing the benefits and limitations of using FTLE to restrict flow. We also discuss the importance of parameters, i.e., advection length and data resolution, in establishing a well-defined vessel boundary. We extract appropriate flow lines and surfaces that enable the visualization of blood flow within the vessels. We further enhance the visualization by analyzing flow behavior in the seeded region and generating simplified depictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号