首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   113篇
  国内免费   1篇
电工技术   20篇
化学工业   417篇
金属工艺   51篇
机械仪表   51篇
建筑科学   41篇
矿业工程   2篇
能源动力   49篇
轻工业   318篇
水利工程   19篇
石油天然气   16篇
无线电   88篇
一般工业技术   274篇
冶金工业   126篇
原子能技术   11篇
自动化技术   165篇
  2024年   4篇
  2023年   16篇
  2022年   33篇
  2021年   89篇
  2020年   46篇
  2019年   64篇
  2018年   69篇
  2017年   82篇
  2016年   67篇
  2015年   41篇
  2014年   66篇
  2013年   120篇
  2012年   101篇
  2011年   124篇
  2010年   81篇
  2009年   90篇
  2008年   89篇
  2007年   61篇
  2006年   46篇
  2005年   34篇
  2004年   35篇
  2003年   27篇
  2002年   19篇
  2001年   15篇
  2000年   11篇
  1999年   15篇
  1998年   39篇
  1997年   27篇
  1996年   24篇
  1995年   18篇
  1994年   21篇
  1993年   11篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   8篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1978年   2篇
  1976年   5篇
  1973年   1篇
排序方式: 共有1648条查询结果,搜索用时 31 毫秒
131.
132.
Scanning electron microscopy (SEM) is commonly used in the analysis of scaffolds morphology, as well as cell attachment, morphology and spreading on to the scaffolds. However, so far a specific methodology to prepare the alginate hydrogel (AH) scaffolds for SEM analysis has not been evaluated. This study compared different methods to fix/dehydrate cells in AH scaffolds for SEM analysis. AH scaffolds were prepared and seeded with NIH/3T3 cell line; fixed with glutaraldehyde, osmium tetroxide, or the freeze drying method and analyzed by SEM. Results demonstrated that the freeze dried method interferes less with cell morphology and density, and preserves the scaffolds structure. The fixation with glutaraldehyde did not affect cells morphology and density; however, the scaffolds morphology was affected in some level. The fixation with osmium tetroxide interfered in the natural structure of cells and scaffold. In conclusion the freeze drying and glutaraldehyde are suitable methods for cell fixation in AH scaffold for SEM, although scaffolds structure seems to be affected by glutaraldehyde. Microsc. Res. Tech. 78:553–561, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
133.
Steroid bioconversion: Towards green processes   总被引:1,自引:0,他引:1  
There is an increasing trend towards reducing the use of organic solvents in industry due to environmental constraints and the adoption of green chemistry guidelines. To overcome the low volumetric productivity of aqueous bioconversion systems involving sparingly water soluble hydrophobic compounds, processes are being developed and designed to incorporate green solvent such as supercritical fluids, ionic liquids and natural oils, and liquid polymers, among others as an alternative to organic solvents. Moreover, processes are developed and redesigned to use/reuse chemicals and reagents derived from waste or renewable feed stocks in order to diminish E-factors.In this work, the use of green solvents as key components in the bioconversion media for a multi-step microbial bioconversion was assessed in a suspended whole cell system, combined with the use of by-products as raw materials, ultimately used as carbon source for cell growth and as sterol substrate for bioconversion. The model system is the selective cleavage of the side-chain of β-sitosterol performed by free resting cells of Mycobacterium sp. NRRL B-3805, a well-established industrial multi-enzymatic process involving the use of nine catabolic enzymes in a 14-step metabolic pathway.Bioconversion yields in silicone media were higher than the ones obtained in polyethylene glycol (PEG), polypropylene glycol (PPG) and ionic liquids, as well as in dioctyl phthalate (DOP), an organic solvent that has previously been shown to allow high conversion yields. Total conversion of 12 mM substrate in silicone media was consistently obtained at the end of 120-h bioconversion runs. Similar bioconversion profiles were attained during a 50-fold scale-up, maintaining constant the power consumption per unit of volume.  相似文献   
134.
A gold electrode surface was modified using a dinuclear copper complex [CuII2 (Ldtb)(μ-OCH3)](BPh4) and then coated with a chitosan film. This biomimetic polymer film-coated electrode was employed to eliminate the interference from ascorbic acid and uric acid in the sensitive and selective determination of dopamine. The optimized conditions obtained for the biomimetic electrode were 0.1 M phosphate buffer solution (pH 8.0), complex concentration of 2.0 × 10−4 M, 0.1% of chitosan and 0.25% of glyoxal. Under the optimum conditions, the calibration curve was linear in the concentration range of 4.99 × 10−7 to 1.92 × 10−5 M, and detection and quantification limits were 3.57 × 10−7 M and 1.07 × 10−6 M, respectively. The recovery study gave values of 95.2-102.6%. The lifetime of this biomimetic sensor showed apparent loss of activity after 70 determinations. The results obtained with the modified electrode for dopamine quantification in the injection solution matrix were in good agreement with those of the pharmacopoeia method.  相似文献   
135.
A water suspension of nanocomposite microcapsules with embedded ZnO nanoparticles in the capsule shell is reported. The microcapsule morphology is characterized by confocal microscopy, TEM, SEM, and AFM before and after ultrasound treatment. A remarkably high capsule sensitivity to ultrasound is evidenced, and it is observed to grow with increasing number of ZnO nanoparticle layers in the nanocomposite shell. This effect is correlated with the mechanical properties of microcapsules measured with AFM.  相似文献   
136.
Groundwater resources are in many parts of the world the only source for private domestic, agricultural and public water supply. Subsurface has also become major recipient of wastewater and solid waters especially in the developing countries. Overexploitation of coastal aquifers and pollution are among the main problems related to groundwater resources assessment and management in Santiago Island (Cabo Verde). Brackish groundwater is the only available water type in the region that is being provided to numerous parts of the Island such as Praia Baixo, Montenegro, and Charco for agriculture and human supply. Solute and isotope data obtained in different groundwater systems were used in the identification of groundwater resources degradation. In order to understand the influence of the anthropogenic activities on the water quality and the main origin of the salts in groundwater, a statistical approach (Principal Components Analyses—PCA) was performed on the physico-chemical data. The results obtained indicate water–rock interaction mechanisms as the major process responsible for the groundwater quality (mainly calcium-bicarbonate type), reflecting the lithological composition of the subsurface soil. Also, anthropogenic contamination was identified, in several points of the island. Isotopic techniques (δ2H, δ18O and 3H content) combined with geochemistry provided comprehensive information on groundwater recharge, as well as on the identification of salinization mechanisms (e.g. seawater intrusion, salt dissolution, and marine aerosols) of the groundwater systems, at Santiago Island.  相似文献   
137.
138.
For the adaptation of cells of Saccharomyces cerevisiae, a period of latency is necessary before exponential growth is resumed in a medium supplemented with a highly inhibitory concentration of copper. In this work, we have examined some physiological responses occurring during this period of adaptation. The results revealed that plasma membrane H(+)-ATPase (PM-ATPase) activity is strongly stimulated (up to 24-fold) during copper-induced latency in growth medium with glucose, reaching maximal levels when the cells were about to start inhibited exponential growth. This in vivo activation of the ATPase activity by copper was accompanied by the stimulation of the H(+)-pumping activity of the enzyme in vivo and was essentially due to the increase of the apparent V(max) for MgATP. Although the exact molecular basis of the reported plasma membrane ATPase activation was not clarified, no increase in the mRNA levels from the encoding genes PMA1 and PMA2 was apparently detected during copper-induced latency. The physiological response reported here may allow the cells to cope with copper-induced lipid peroxidation and consequent decrease in plasma membrane lipid ordering and increase in the non-specific permeability to protons. The consequences of these copper deleterious effects were revealed by the decrease of the intracellular pH (pH(i)) of the yeast population, from approximately pH(i) 6 to pH(i) 5, during copper-induced latency in growth medium at pH 4.3. The time-dependent patterns of plasma membrane ATPase activation and of the decrease of pH(i) during the period of adaptation to growth with copper correlate, suggesting that the regulation of this membrane enzyme activity may be triggered by intracellular acidification. Consistent with this idea, when exponential growth under copper stress was resumed and the pH(i) of the yeast population recovered up to physiological values, plasma membrane ATPase activity simultaneously decreased from the highly stimulated level attained during the adaptation period of latency.  相似文献   
139.
Sorption of carbaryl (1-naphthyl-N-methyl-carbamate) from aqueous suspension to smectite was studied using Fourier transform infrared (FTIR), high-performance liquid chromatography (HPLC) (for batch sorption), and quantum chemical methods. The amount of carbaryl sorbed was strongly dependent on the surface-charge density of the smectite with more sorption occurring on the two "low" surface-charge density smectites (SHCa-1 and SWy-2) compared to that of the high surface-charge SAz-1 smectite. In addition, the amount of carbaryl sorbed was strongly dependent on the nature of the exchangeable cation and followed the order of Ba approximately Cs approximately Ca > Mg approximately K > Na approximately Li for SWy-2. A similartrend was found for hectorite (SHCa-1) of Cs > Ba > Ca > K approximately Mg > Na approximately Li. Using the shift of the carbonyl stretching band as an indicator of the strength of interaction between carbaryl and the exchangeable cation, the observed order was Mg > Ca > Ba approximately K > Na > Cs. The position of the carbonyl stretching band shifted to lower wavenumbers with increasing ionic potential of the exchangeable cation. Density functional theory predicted a cation-induced lengthening of the C=O bond, resulting from the carbonyl group interacting directly with the exchangeable cation in support of the spectroscopic observations. Further evidence was provided by a concomitant shift in the opposite direction by several vibrational bands in the 1355-1375 cm(-1) region assigned to stretching bands of the carbamate N-Ccarbonyl and Oether-Ccarbonyl bonds. These data indicate that carbaryl sorption is due, in part, to site-specific interactions between the carbamate functional group and exchangeable cations, as evidenced by the FTIR data. However, these data suggest that hydrophobic interactions also contribute to the overall amount of carbaryl sorbed. For example, the FTIR data indicated thatthe weakest interaction occurred when Cs+ was the exchangeable cation. In contrast, the highest amount of carbaryl sorption was observed on Cs-exchanged smectite. Of all the cations studied, Cs has the lowest enthalpy of hydration. It is suggested that this low hydration energy provides the carbaryl with greater access to the hydrophobic regions of the siloxane surface.  相似文献   
140.
Microorganisms are naturally found as biofilm communities more than planktonic free‐floating cells; however, planktonic culture remains the current model for microbiological studies, such as disinfection techniques. The presence of fungal biofilms in the clinical setting has a negative impact on patient mortality, as Candida biofilms have proved to be resistant to biocides in numerous in vitro studies; however, there is limited information on the effect of pulsed light on sessile communities. Here we report on the use of pulsed UV light for the effective inactivation of clinically relevant Candida species. Fungal biofilms were grown by use of a CDC reactor on clinically relevant surfaces. Following a maximal 72 h formation period, the densely populated biofilms were exposed to pulsed light at varying fluences to determine biofilm sensitivity to pulsed‐light inactivation. The results were then compared to planktonic cell inactivation. High levels of inactivation of C. albicans and C. parapsilosis biofilms were achieved with pulsed light for both 48 and 72 h biofilm structures. The findings suggest that pulsed light has the potential to provide a means of surface decontamination, subsequently reducing the risk of infection to patients. The research described herein deals with an important aspect of disease prevention and public health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号