首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   48篇
  国内免费   1篇
电工技术   12篇
综合类   1篇
化学工业   201篇
金属工艺   16篇
机械仪表   16篇
建筑科学   29篇
矿业工程   5篇
能源动力   37篇
轻工业   64篇
水利工程   9篇
石油天然气   2篇
无线电   90篇
一般工业技术   201篇
冶金工业   77篇
原子能技术   1篇
自动化技术   121篇
  2024年   1篇
  2023年   18篇
  2022年   21篇
  2021年   35篇
  2020年   28篇
  2019年   34篇
  2018年   37篇
  2017年   52篇
  2016年   40篇
  2015年   23篇
  2014年   41篇
  2013年   73篇
  2012年   45篇
  2011年   48篇
  2010年   46篇
  2009年   35篇
  2008年   28篇
  2007年   31篇
  2006年   19篇
  2005年   23篇
  2004年   15篇
  2003年   13篇
  2002年   17篇
  2001年   9篇
  2000年   8篇
  1999年   14篇
  1998年   16篇
  1997年   15篇
  1996年   7篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
排序方式: 共有882条查询结果,搜索用时 46 毫秒
71.
A method of evaluating trend (positive or negative) in 2 x K ordered tables is suggested for cases in which the scores for the first (K-1) categories are known a priori but the score for the last category is not known. Such a category is termed as open-ended category in this paper. Ordered tables with an open-ended category are often encountered while evaluating the Cochran-Armitage-Mantel (CAM) trend. In the present paper, the distribution of the test statistic is presented and simulations are carried out to check the asymptotics. The method is then exemplified by an existing data set.  相似文献   
72.
Gautam Dasgupta 《Acta Mechanica》2008,195(1-4):379-395
Summary For conventional finite element problems, element geometry is adequate to determine shape functions. However, to account for secondary effects due to material randomness, conventional shape functions need to be modified according to the spatial fluctuation of constitutive variables in each Monte Carlo sample. This paper develops a method to compute stochastic shape functions based on local equilibrium criteria when each simulated sample complies with the same order of accuracy as designated for the associated deterministic problem. The resulting stochastic stiffness matrix is then calculated via the stochastic strain–displacement matrix based on those stochastic shape functions. In order to attain high accuracy, which is the characteristic of the boundary element method, rational polynomial shape functions are used in this paper. The proposed formulation is indispensable when secondary effects (due to nano size and time scale in modern technology, fiber randomness in composites, thermodynamic interactions in biological tissues, to name a few) demand a high accuracy finite element formulation. The elasto-plastic deformation that introduces concavity motivated the numerical example elaborated here. An example of a concave quadrilateral element with spatial randomness for the modulus of elasticity is illustrated. Since isoparametric shape functions for concave quadrilaterals do not exist, the Wachspress rational polynomial shape functions with irrational terms are used. The computer algebra environment Mathematica is employed here. Dedicated to Professor Franz Ziegler on the occasion of his 70th birthday  相似文献   
73.
74.
Exfoliated graphite (EG) was synthesized from natural flake graphite by acid treatment followed by microwave irradiation. A maximum expanded volume of 560 mL/g was achieved for this exfoliation of graphite. EG/phenolic resin composite bipolar plates for polymer electrolyte membrane fuel cell were fabricated with a high loading of EG by compression molding. The composites possess low density, high electrical conductivity, high thermal stability, and high compressive strength. The composite bipolar plates were also characterized by X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and so on. The composite prepared with 50 wt% of EG has shown the desired properties for bipolar plate as per the US Department of Energy (DOE‐2015) targets. As a result, the EG–resin composites can be used as bipolar plates for polymer electrolyte membrane fuel cell applications. POLYM. ENG. SCI., 55:917–923, 2015. © 2014 Society of Plastics Engineers  相似文献   
75.
Targeting β‐amyloid (Aβ) remains the most desired strategy in Alzheimer’s disease (AD) drug discovery research. Many peptides that specifically target Aβ aggregates are known, encompassing efforts from both industrial and academic research settings. However, in clinical terms, not much success has been gained with peptide research; in turn, small drug‐like molecules are already globally recognized as showing promise as an alternate approach. Aβ aggregation inhibitors are the most important part of the multifunctional drug design regimen for treating AD. Unfortunately, rational drug design approaches with small molecules are still in the initial stages. Herein we highlight, update, and elaborate on the structural anatomy of Aβ and known Aβ aggregation inhibitors in hopes of helping to optimize their use in structure‐based drug design approaches toward inhibitors with greater specificity. Furthermore, we present the first review of efforts to target a previously uncharacterized region of acetylcholinesterase: the N‐terminal 7–20 sub‐region, which was experimentally elucidated to participate in Aβ aggregation and deposition.  相似文献   
76.
R. K. Gautam  K. K. Kar 《Fuel Cells》2016,16(2):179-192
The most essential and costly component of polymer electrolyte membrane fuel cells is the bipolar plate. The production of suitable composite bipolar plates for polymer electrolyte membrane fuel cell with good mechanical properties and high electrical conductivity is scientifically and technically very challenging. This paper reports the development of composite bipolar plates using exfoliated graphite, carbon black, and graphite powder in resole‐typed phenol formaldehyde. The exfoliated graphite with maximum exfoliated volume of 570 ± 10 mL g−1 used in this study was prepared by microwave irradiation of chemically intercalated natural flake graphite in a few minutes. The composite plates were prepared by varying exfoliated graphite content from 10 to 35 wt.% in phenolic resin along with fixed weight percentage of carbon black (5 wt.%) and graphite powder (3 wt.%) by compression molding. The composite plates with filler weight percentage of 35/5/3/exfoliated graphite/carbon black/graphite powder offer in‐plane and trough‐plane electrical conductivities of 374.42 and 97.32 S cm−1, bulk density 1.58 g cm−3, compressive strength 70.43 MPa, flexural strength 61.82 MPa, storage modulus 10.25 GPa, microhardness 73.23 HV and water absorption 0.22%. Further, I–V characteristics notify that exfoliated graphite/carbon black/graphite powder/resin composite bipolar plates in unit fuel cell shows better cell performance compared exfoliated graphite/resin composite bipolar plates. The composite plates own desired mechanical properties with low bulk density, high electrical conductivity, and good thermal stability as per the U.S. department of energy targets at low filler concentration and can be used as bipolar plates for proton exchange membrane fuel cells.  相似文献   
77.
The removal of fluoride from drinking water by the method of adsorption on activated alumina is found superior than other defluoridation techniques mostly due to the strong affinity between aluminium and fluoride. Dissolution of aluminium from the alumina surfaces into its free and hydroxide ions in the aqueous medium is reported to be very low, but the presence of high fluoride concentrations may increase its solubility due to the formation of monomeric aluminium fluoride and aluminium hydroxyl fluoride complexes. An Activated Alumina Defluoridation Model Simulator (AAD) has been developed to represent fluoride adsorption on the basis of the surface complexation theory incorporating aspects of aluminium solubility in presence of high fluoride concentrations and pH variations. Model validations were carried out for residual aluminium concentrations in alumina treated water, by conducting a series of batch fluoride adsorption experiments using activated alumina (grade FB101) treating fluoride concentrations of 1-10 mg/L, at varying pH conditions. The total residual aluminium in the defluoridated water is due to presence of both dissolved and precipitated Al-F complexed forms. The Freundlich adsorption isotherm was found fit for fluoride adsorption capacity versus residual fluoride concentrations for pH = 7.5, and the relationship is given by the linearised equation log (x/m) = log k + (1/n) log Ce with values of k = 0.15 mg/g and 1/n = 0.45 indicating favorable adsorption. The relationship is linear in the region of low fluoride concentrations, but as concentrations of fluoride increased, the formation of the dissolved AlF30 complexes was favored than adsorption on alumina, and hence makes the isotherm nonlinear. The AAD simulations can predict for operating fluoride uptake capacity in order to keep the residual aluminium within permissible limits in the alumina treated water.  相似文献   
78.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   
79.
In this investigation, the effects of blending with ethylene–propylene–diene terpolymer and subsequent dynamic curing with sulfur on the macromolecular structure and properties of pure low‐density polyethylene and high‐density polyethylene were studied. The crosslinking efficiency of polyethylene‐based ethylene–propylene–diene terpolymer blends upon dynamic curing was assessed with torque and gel content measurements. The curing of dispersed ethylene–propylene–diene terpolymer in a polyethylene matrix improved both the mechanical and thermomechanical properties as a result of the formation of a crosslink structure in the rubber phase. In view of the electrical applications of this cured blend material, the volume resistivity was measured. The thermal stability of vulcanized polyethylene/ethylene–propylene–diene terpolymer blends was found to be superior to that of unvulcanized blends. In scanning electron microscopy analysis, good interface bonding between the polyethylene matrix and dispersed ethylene–propylene–diene terpolymer was observed for the cured blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
80.
Bio-based polymer nanocomposites have a unique niche of their own in the domain of green technology. A bio-based sulfone epoxy resin (BPSE) has been synthesized from the monoglyceride of Mesua ferrea L. seed oil, bis(4-hydroxyphenyl) sulfone, bisphenol-A and epichlorohydrin. The formation of resin was confirmed by the determination of viscosity, epoxy equivalent, etc. and the structure was elucidated from FTIR and 1H NMR spectroscopies. This resin was used as the matrix for the preparation of epoxy/clay nanocomposites by ex situ technique using different doses of organo nano-clay (1, 2.5 and 5%, w/w). XRD, TEM, SEM, FTIR and rheological studies confirmed the formation of nanocomposites with partial exfoliated structure of the nano-clay. The study demonstrated that the tensile strength enhanced from 4 to 11.4 MPa, scratch hardness improved by two-fold, gloss value increased by 20 units, adhesive strength improved by two-fold and thermal stability improved by 19 °C on incorporation of 5 wt% of nano-clay with respect to the pristine polymer. The limiting oxygen index value and UL94 test indicated improvement of flame retardancy of the nanocomposites. The results exhibit the potentiality of these bio-based epoxy/clay nanocomposites for multifaceted advanced applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号