首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  国内免费   1篇
电工技术   2篇
化学工业   25篇
金属工艺   4篇
机械仪表   1篇
能源动力   4篇
轻工业   2篇
石油天然气   1篇
无线电   9篇
一般工业技术   11篇
冶金工业   3篇
原子能技术   2篇
自动化技术   11篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
71.
A simple and compact electrostatic quadrupole triplet lens has been designed and fabricated as part of the dedicated beam line for analysis of archaeological samples. A Fortran based ion optics program has been developed to simulate the beam line and lens parameters to achieve a focused sub-millimeter beam spot. The results of simulations are utilized to design and fabricate beam-line elements. The beam spot was measured by wire scanning method to be 0.3 mm for the object-slit width of 1 mm at a distance of 15 mm from the exit window. The improved Ion Beam Analysis setup allows accelerated PIXE analysis of samples whose details are comparable with the beam probe in size. The PIXE spectrum obtained by external analysis of a historical enameled ceramic sample with a sub-millimeter beam is compared with that obtained by in-vacuum standard PIXE analysis.  相似文献   
72.
The early and long-lasting effects of pentylenetetrazol-kindling on hippocampal CA1 synaptic transmission were investigated. Experiments were carried out in the hippocampal slices from control and kindled rats at two post-kindling periods, i.e. 48-144 h (early phase) and 30-33 days (long-lasting phase). Field potentials, i.e. population excitatory postsynaptic potential (pEPSP) and population spike (PS) were recorded at the stratum pyramidale following stimulation of the stratum radiatum. Kindling-induced changes in synaptic transmission were assessed by stimulus-response functions and paired-pulse responses. The results showed that 48-144 h after kindling, the PS amplitude in the CA1 of kindled slices enhanced, and a second PS appeared compared to control slices. But at 30-33 days after kindling, the pEPSP slope in the CA1 of kindled slices enhanced without any change in the PS compared with those in the control slices. Evaluation of paired-pulse responses showed a significant reduction in paired-pulse inhibition for PS 48-144 h after kindling and a significant increase in paired-pulse inhibition for pEPSP 30-33 days after kindling. Our results suggest that pentylenetetrazol-kindling is accompanied by enhanced excitability and a reduction of paired-pulse inhibition in hippocampal CA1. The increased paired-pulse inhibition one month after kindling, may be interpreted as an adaptive process to cope with subsequent seizures.  相似文献   
73.
Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.  相似文献   
74.
An organophilic clay has been obtained via cation exchange reaction between sodium montmorillonite and the hydrochloride salt of 2‐(5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl)pyridine, POBD. Thermogravimetric analysis (TGA) showed that thermal decomposition of the organophilic clay starts at about 350°C, which shows that it is quite thermally stable compared with conventional montmorillonite modified with aliphatic long chain surfactants. POBD‐modified organoclay almost quantitatively removed the Co(II) ion from aqueous solution at pH = 10.0 (Qt = 3.00 mg g−1, R = 98.2%). A series of polyimide/clay nanocomposite materials (PCNs) consisting of POBD and benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride, BTDA were also prepared by an in situ polymerization reaction via thermal imidization. POBD‐modified organoclay was used as a surfactant at different concentrations. Intercalation of polymer chains within the organoclay galleries was confirmed by WXRD. Both the glass transition temperature and thermal stability are increased with respect to pristine PI at low clay concentrations. At high clay loadings, the aggregation of organoclay particles results in a decrease in Tg and thermal stability. In the SEM images of PCN 1 and 3%, too many micro cracks are observed in the background, and a flower‐shape pattern spreads uniformly over the entire surface. The maximum Co(II) uptake capacity and efficiency were observed at pH 10.0 within a 40‐h period for both PI and PCN films. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   
75.
The effect of the existence of nanoparticles on foam stability, foamability, and the oil recovery factor (RF) has been studied experimentally, and influential phenomena and mechanisms have been examined. A sequence of experiments, including, ‘foam bulk-static experiments’, ‘surface tension (ST) measurements,’ and ‘micromodel foam flood,’ were designed and then implemented to study the foam behaviour in two foam systems: (1) anionic-nanoparticles + cationic-surfactant and (2) anionic-nanoparticles + anionic-surfactant. This study provides a comprehensive insight into the mechanisms affecting the stability of nanoparticle-stabilized foam. Also, despite previous studies, the effect of Marangoni flow on nanoparticle-stabilized foam has been discussed briefly. Results show that the interactions of effective mechanisms work differently in the two series. In the like-charge system, surfactant molecules accumulate in the interface of lamellas due to repulsive forces; therefore, stability and foamability improve as surface tension and molecular diffusion reduce. Additionally, Marangoni flow restitutes the negative impact of gravity drainage. In the unlike-charge system, observations illustrate that nanoparticles reach the interface. The presence of nanoparticles at the interface increases detachment energy significantly, and as a result, the stability is boosted. The accumulation of nanoparticles in the interface changes it to a solid-like surface with limited diffusibility and viscosity. Although Marangoni flow is lost, reducing molecular diffusion improves foam stability. Flooding tests show that foam stability increment improves sweep efficiency at near-wellbore areas even when foamability is weak. Finally, it can be claimed that in the unlike-charge system, the sweep efficiency and foam stability increase to a greater extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号