首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   58篇
  国内免费   3篇
电工技术   1篇
综合类   1篇
化学工业   82篇
金属工艺   9篇
机械仪表   21篇
建筑科学   9篇
能源动力   34篇
轻工业   126篇
水利工程   2篇
石油天然气   8篇
无线电   37篇
一般工业技术   122篇
冶金工业   11篇
原子能技术   3篇
自动化技术   80篇
  2024年   5篇
  2023年   21篇
  2022年   28篇
  2021年   82篇
  2020年   32篇
  2019年   32篇
  2018年   46篇
  2017年   41篇
  2016年   39篇
  2015年   24篇
  2014年   20篇
  2013年   34篇
  2012年   17篇
  2011年   25篇
  2010年   27篇
  2009年   16篇
  2008年   11篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
  1966年   2篇
排序方式: 共有546条查询结果,搜索用时 15 毫秒
91.
Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg?1) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300–350 g kg?1, and then declined slightly at further maturity beyond 350 g kg?1. The increases in milk (R2 = 0.599) and protein (R2 = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage‐based diets improved the forage DMI by 2 kg d?1, milk yield by 1.9 kg d?1 and milk protein content by 1.2 g kg?1. Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis‐unsaturated FAs, C18:3n‐3 and n‐3/n‐6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg?1 and feeding in combination with grass silage results in a higher milk yield of dairy cows. © 2014 Society of Chemical Industry  相似文献   
92.
The molecular basis of the anti-diabetic properties of camel milk reported in many studies and the exact active agent are still elusive. Recent studies have reported effects of camel whey proteins (CWP) and their hydrolysates (CWPH) on the activities of dipeptidyl peptidase IV (DPP-IV) and the human insulin receptor (hIR). In this study, CWPH were generated, screened for DPP-IV binding in silico and inhibitory activity in vitro, and processed for peptide identification. Furthermore, pharmacological action of intact CWP and their selected hydrolysates on hIR activity and signaling and on glucose uptake were investigated in cell lines. Results showed inhibition of DPP-IV by CWP and CWPH and their positive action on hIR activation and glucose uptake. Interestingly, the combination of CWP or CWPH with insulin revealed a positive allosteric modulation of hIR that was drastically reduced by the competitive hIR antagonist. Our data reveal for the first time the profiling and pharmacological actions of CWP and their derived peptides fractions on hIR and their pathways involved in glucose homeostasis. This sheds more light on the anti-diabetic properties of camel milk by providing the molecular basis for the potential use of camel milk in the management of diabetes.  相似文献   
93.
This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.  相似文献   
94.
This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.  相似文献   
95.
96.
Silicone oils have wide range of applications in personal care products due to their unique properties of high lubricity, non‐toxicity, excessive spreading and film formation. They are usually employed in the form of emulsions due to their inert nature. Until now, different conventional emulsification techniques have been developed and applied to prepare silicone oil emulsions. The size and uniformity of emulsions showed important influence on stability of droplets, which further affect the application performance. Therefore, various strategies were developed to improve the stability as well as application performance of silicone oil emulsions. In this review, we highlight different factors influencing the stability of silicone oil emulsions and explain various strategies to overcome the stability problems. In addition, the silicone deposition on the surface of hair substrates and different approaches to increase their deposition are also discussed in detail.  相似文献   
97.
98.
A series of silica–epoxy nanocomposites were prepared by hydrolysis of tetraethoxysilane within the organic matrix at different processing temperatures, i.e., 25 and 60 °C. Epoxy matrices reinforced with 2.0–10.0 wt% silica were subsequently crosslinked with an aliphatic diamine hardener to give optically transparent nanocomposite films. Interphase connections between silica networks and organic matrix were established by in situ functionalization of silica with 2.0 wt% γ-aminopropyltriethoxysilane (APTS). The microstructure of silica–epoxy nanocomposites as studied by transmission electron microscopy indicated the formation of very well-matched nanocomposites with homogeneous distribution of silica at relatively higher temperatures and in the presence of APTS. Thermogravimetric and static mechanical analyses confirmed considerable increase in thermal stability, stiffness, and toughness of the modified composite materials as compared to neat epoxy polymer and unmodified silica–epoxy nanocomposites. A slight improvement in the glass transition temperatures was also recorded by differential scanning calorimetry measurements. High temperature of hydrolysis during the in situ sol–gel process not only improved reaction kinetics but also promoted mutual solubility of the two phases, and consequently enhanced the interface strength. In addition, APTS influenced the size and distribution of the inorganic domain and resulted in better performance of the modified silica–epoxy nanocomposites.  相似文献   
99.
This paper addresses a holistic mathematical design using a novel approach for understanding the mechanism of cathodic delamination. The approach employed a set of interdependent parallel processes with each process representing: cation formation, oxygen reduction and cation transport mechanism, respectively. Novel mathematical equations have been developed for each of the processes based on the observations recorded from experimentation. These equations are then solved using efficient time-iterated algorithms. Each process consists of distinct algorithms which communicate with each other using duplex channels carrying signals. Each signal represents a distinct delamination parameter. As a result of interdependency of various processes and their parallel behaviour, it is much easier to analyse the quantitative agreement between various delamination parameters. The developed modelling approach provides an efficient and reliable prediction method for the delamination failure. The results obtained are in good agreement with the previously reported experimental interpretations and numerical results. This model provides a foundation for the future research within the area of coating failure analysis and prediction.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号