首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2746篇
  免费   133篇
  国内免费   3篇
电工技术   36篇
综合类   9篇
化学工业   639篇
金属工艺   52篇
机械仪表   37篇
建筑科学   179篇
矿业工程   6篇
能源动力   72篇
轻工业   220篇
水利工程   20篇
石油天然气   5篇
无线电   291篇
一般工业技术   548篇
冶金工业   299篇
原子能技术   23篇
自动化技术   446篇
  2023年   41篇
  2022年   25篇
  2021年   106篇
  2020年   59篇
  2019年   59篇
  2018年   59篇
  2017年   61篇
  2016年   92篇
  2015年   75篇
  2014年   125篇
  2013年   143篇
  2012年   163篇
  2011年   200篇
  2010年   123篇
  2009年   124篇
  2008年   142篇
  2007年   132篇
  2006年   128篇
  2005年   117篇
  2004年   88篇
  2003年   61篇
  2002年   65篇
  2001年   34篇
  2000年   51篇
  1999年   46篇
  1998年   74篇
  1997年   58篇
  1996年   57篇
  1995年   39篇
  1994年   40篇
  1993年   26篇
  1992年   20篇
  1991年   22篇
  1990年   12篇
  1989年   15篇
  1988年   10篇
  1987年   13篇
  1986年   10篇
  1985年   15篇
  1984年   16篇
  1983年   17篇
  1982年   15篇
  1981年   12篇
  1980年   7篇
  1979年   10篇
  1978年   14篇
  1977年   7篇
  1976年   16篇
  1974年   5篇
  1973年   7篇
排序方式: 共有2882条查询结果,搜索用时 109 毫秒
991.
Eco-friendly mixtures may substitute pure working fluids in thermodynamic cycle processes, yet the existing calculation approaches of mixture condensation are complex due to iterative procedures and multiple input data. To simplify condenser design, this project aims for a new calculation method of mixtures. On this behalf, experimental data for the condensation of ethanol/water and ethanol/octamethyltrisiloxane is provided within a wide composition range to identify the most influential parameters. Finally, a practical prediction method for heat transfer coefficients of mixtures is suggested.  相似文献   
992.
Deposition of Cu(In,Ga)Se2 (CIGS) thin film solar cells on metallic substrate is an attractive approach for development of low cost solar modules. However, in such devices, special care has to be taken to avoid diffusion of impurities, such as Fe, Ni, and Cr, from the substrate into the active layers. In this work, the influence of Ni and Cr impurities on the electronic properties of CIGS thin film solar cells is investigated in detail. Impurities were introduced into the CIGS layer by diffusion during the CIGS deposition process from a Ni or Cr precursor layer below the Mo electrical back contact. A high temperature and a low temperature CIGS deposition process were applied in order to correlate the changes in the photovoltaic parameters with the amount of impurities diffused into the absorber layer. Solar cells with Ni and Cr impurities show a reduction in the device performance, whereas the effect was most pronounced in Ni containing devices. The presence of deep defect levels in the absorber layer was identified with admittance spectroscopy and can be related to Ni and Cr impurities, which diffused into the CIGS layer according to secondary ion mass spectroscopy depth profiles and inductively coupled plasma mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
993.
Work function modification by polyelectrolytes and tertiary aliphatic amines is found to be due to the formation of a net dipole at the electrode interface, induced by interaction with its own image dipole in the electrode. In polyelectrolytes differences in size and side groups between the moving ions lead to differences in approach distance towards the surface. These differences determine magnitude and direction of the resulting dipole. In tertiary aliphatic amines the lone pairs of electrons are anticipated to shift towards their image when close to the interface rather than the nitrogen nuclei, which are sterically hindered by the alkyl side chains. Data supporting this model is from scanning Kelvin probe microscopy, used to determine the work function modification by thin layers of such materials on different substrates. Both reductions and increases in work function by different materials are found to follow a general mechanism. Work function modification is found to only take place when the work function modification layer (WML) is deposited on conductors or semiconductors. On insulators no effect is observed. Additionally, the work function modification is independent of the WML thickness or the substrate work function in the range of 3 to 5 eV. Based on these results charge transfer, doping, and spontaneous dipole orientation are excluded as possible mechanisms. This understanding of the work function modification by polyelectrolytes and amines facilitates design of new air‐stable and solution‐processable WMLs for organic electronics.  相似文献   
994.
995.
Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one‐dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro‐biochemical devices.  相似文献   
996.
997.
The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.  相似文献   
998.
With only two matched processing steps, the fabrication of thick nanoporous alumina membranes with mono‐oriented, perfect hexagonal packing of pores, and precise control of all structural parameters over large areas is demonstrated. The cylindrical pores are uniform in shape and widely tunable in their dimensions and spatial distribution, with aspect ratios as high as 500. In brief, electropolished aluminum is first patterned using three‐beam interference lithography in a single step and then anodized in a hard regime. The periodic concavities in the aluminum surface guide the pore nucleation, and the self‐ordering phenomenon guarantees the maintenance of the predefined arrangement throughout the entire layer. In contrast to other methods, the interpore distance can be easily adjusted, the porous layer is not limited in thickness, no prefabricated stamps are involved, and the periodic pattern can be easily reproduced without risk of degradation. The approach overcomes the time, cost, and scale limitations of other existing processes. These membranes are well‐suited for the templated fabrication of perfectly ordered arrays of highly uniform 1D nanostructures. Thus, the application fields of these functional membranes are diverse: magneto‐optical and opto‐electronic devices, photonic crystals, solar cells, fuel cells, and chemical and biochemical sensing systems, to name a few.  相似文献   
999.
In this work, the impact of cation disorder on the electrical properties of biaxially textured Co2ZnO4 and Co2NiO4 thin films grown by pulsed laser deposition are investigated using a combination of experiment and theory. Resonant elastic X‐ray diffraction along with conductivity measurements both before and after post‐deposition annealing show that Co2ZnO4 and Co2NiO4 exhibit opposite changes of the conductivity with cation disorder, which can be traced back to their different ground‐state atomic structures, being normal and inverse spinel, respectively. Electronic structure calculations identify a self‐doping mechanism as the origin of conductivity. A novel thermodynamic model describes the non‐equilibrium cation disorder in terms of an effective temperature. This work offers a way of controlling the conductivity in spinels in a quantitative manner by controlling the cation disorder and a new design principle whereby non‐equilibrium growth can be used to create beneficial disorder.  相似文献   
1000.
Equilibria in Topology Control Games for Ad Hoc Networks   总被引:2,自引:0,他引:2  
We study topology control problems in ad hoc networks where network nodes get to choose their power levels in order to ensure desired connectivity properties. Unlike most other work on this topic, we assume that the network nodes are owned by different entities, whose only goal is to maximize their own utility that they get out of the network without considering the overall performance of the network. Game theory is the appropriate tool to study such selfish nodes: we define several topology control games in which the nodes need to choose power levels in order to connect to other nodes in the network to reach their communication partners while at the same time minimizing their costs. We study Nash equilibria and show that—among the games we define—these can only be guaranteed to exist if each network node is required to be connected to all other nodes (we call this the Strong Connectivity Game). For a variation called Connectivity Game, where each node is only required to be connected (possibly via intermediate nodes) to a given set of nodes, we show that Nash equilibria do not necessarily exist. We further study how to find Nash equilibria with incentive-compatible algorithms and compare the cost of Nash equilibria to the cost of a social optimum, which is a radius assignment that minimizes the total cost in a network where nodes cooperate. We also study variations of the games; one where nodes not only have to be connected, but k-connected, and one that we call the Reachability Game, where nodes have to reach as many other nodes as possible, while keeping costs low. We extend our study of the Strong Connectivity Game and the Connectivity Game to wireless networks with directional antennas and wireline networks, where nodes need to choose neighbors to which they will pay a link. Our work is a first step towards game-theoretic analyses of topology control in wireless and wireline networks. A preliminary version of this paper appeared in DIALM-POMC ’03 [8]. Stephan Eidenbenz is a technical staff member in Discrete Simulation Sciences (CCS-5) at Los Alamos National Laboraotry. He received his Ph.D. in Computer Science from the Swiss Federal Institute of Technology, Zurich, Switzerland in 2000. Stephan’s research covers areas in approximability, algorithms, computational geometry, computational biology, large-scale discrete simulation, selfish networking, efficient networking, protocol design and optimization. V. S. Anil Kumar is currently an Assistant Professor in the Dept. of Computer Science and a Senior Research Associate at Virginia Bioinformatics Institute, Virginia Tech. Prior to this, he was a technical staff member in Los Alamos National Laboratory. He received a Ph.D. in Computer Science from the Indian Institute of Science in 1999. His research interests include approximation algorithms, mobile computing, combinatorial optimization and simulation of large socio-technical systems. Sibylle Zust received her Masters degree in mathematics from ETH Zurich in Switzerland in 2002. She wrote her diploma thesis at the University of Copenhagen in Denmark. Sibylle Zust spent two and a half years (2002–2005) as a graduate research assistant at the Los Alamos National Laboratory in New Mexico, USA, where she worked on algorithmic aspects of game theory and scheduling problems. She now works for an insurance company in Zurich, Switzerland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号