首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1778篇
  免费   26篇
  国内免费   2篇
电工技术   70篇
化学工业   300篇
金属工艺   42篇
机械仪表   35篇
建筑科学   23篇
能源动力   49篇
轻工业   98篇
水利工程   5篇
石油天然气   1篇
无线电   202篇
一般工业技术   291篇
冶金工业   531篇
原子能技术   36篇
自动化技术   123篇
  2023年   10篇
  2022年   3篇
  2021年   28篇
  2020年   12篇
  2019年   21篇
  2018年   17篇
  2017年   14篇
  2016年   17篇
  2015年   18篇
  2014年   38篇
  2013年   63篇
  2012年   60篇
  2011年   48篇
  2010年   35篇
  2009年   70篇
  2008年   59篇
  2007年   51篇
  2006年   40篇
  2005年   59篇
  2004年   47篇
  2003年   48篇
  2002年   42篇
  2001年   42篇
  2000年   30篇
  1999年   52篇
  1998年   208篇
  1997年   121篇
  1996年   80篇
  1995年   54篇
  1994年   42篇
  1993年   43篇
  1992年   25篇
  1991年   30篇
  1990年   32篇
  1989年   28篇
  1988年   21篇
  1987年   21篇
  1986年   23篇
  1985年   16篇
  1984年   13篇
  1983年   14篇
  1982年   11篇
  1981年   7篇
  1980年   13篇
  1979年   12篇
  1978年   12篇
  1977年   15篇
  1976年   20篇
  1975年   6篇
  1970年   4篇
排序方式: 共有1806条查询结果,搜索用时 16 毫秒
51.
52.
53.
54.
55.
Well-defined La2Sn2O7 with a phase-pure pyrochlore structure was produced by hydrothermal synthesis at temperatures as low as 200°C. Production of phase-pure La2Sn2O7 requires a pH above 10, and higher pH accelerates the crystallization process. The synthesis produced spherical particles of average particle size ∼0.59 μm (±0.12) and surface area ∼14.1 m2/g. SEM and TEM observation for morphologic evolution and kinetic analysis during crystallization indicated that La2Sn2O7 formation probably proceeds via a two-step reaction. First a transient dissolution–precipitation occurs. Then the primary crystallites aggregate because of their colloidal instability, and heterocoagulation with the lanthanum hydrous oxide precursor particles also occurs. The sluggish reaction rate at the later stage of reaction is characterized by an in situ transformation, where the soluble tin species is diffused through the porous La2Sn2O7 aggregates to react with entrapped lanthanum precursors.  相似文献   
56.
Tunnel electroresistance in ferroelectric tunnel junctions (FTJs) has attracted considerable interest, because of a promising application to nonvolatile memories. Development of ferroelectric thin‐film devices requires atomic‐scale band‐structure engineering based on depolarization‐field effects at interfaces. By using FTJs consisting of ultrathin layers of the prototypical ferroelectric BaTiO3, it is demonstrated that the surface termination of the ferroelectric in contact with a simple‐metal electrode critically affects properties of electroresistance. BaTiO3 barrier‐layers with TiO2 or BaO terminations show opposing relationships between the polarization direction and the resistance state. The resistance‐switching ratio in the junctions can be remarkably enhanced up to 105% at room temperature, by artificially controlling the fraction of BaO termination. These results are explained in terms of the termination dependence of the depolarization field that is generated by a dead layer and imperfect charge screening. The findings on the mechanism of tunnel electroresistance should lead to performance improvements in the devices based on nanoscale ferroelectrics.  相似文献   
57.
Ionic liquid/polyvinylidene fluoride composite membrane was successfully prepared by impregnation method and used for the separation on organic chemical hydride process. The separation factors of C6H6/H2 and C6H12/H2 in the ternary mixture system were 7500 and 300, respectively. The ionic liquid membrane showed an excellent possibility as a technology of H2 purification in the organic chemical hydride process by removing aromatic hydrocarbon and cycloalkane simultaneously from the ternary system. © 2015 American Institute of Chemical Engineers AIChE J, 62: 624–628, 2016  相似文献   
58.
A novel vinyl ether-type RAFT agent, benzyl 2-(vinyloxy)ethyl carbonotrithioate (BVCT) was synthesized for various block copolymers via the combination of living cationic polymerization of vinyl ethers and reversible addition−fragmentation chain transfer (RAFT) polymerization. The novel BVCT–trifluoroacetic acid adduct play an important role to produce well-defined block copolymers, which is both as a cationogen under EtAlCl2 initiation system in the presence of ethyl acetate for living cationic polymerization and a RAFT agent for blocks by RAFT polymerization. The resulting polymer, poly(vinyl ether)s, by living cationic polymerization had a high number average α-end functionality (≥0.9) as determined by both 1H NMR and MALDI-TOF-MS spectrometry. In addition, this poly(vinyl ether)s worked well as a macromolecular chain transfer agent for RAFT polymerization. The RAFT polymerization of radically polymerizable monomers was conducted in toluene using 2,2′-azobis(isobutyronitrile) at 70 °C. For example, a double thermoresponsive block copolymer (MOVE61-b-NIPAM150) consisting of 2-methoxyethyl vinyl ether (MOVE) and N-isopropylacrylamide (NIPAM) was prepared via the combination of living cationic polymerization and RAFT polymerization. The block copolymer reversibly formed and deformed micellar assemblies above the phase separation temperature (Tps) of poly(NIPAM) block in water. This BVCT is not only functioned as an initiator, but also acted as a monomer. When BVCT was copolymerized with MOVE by living cationic polymerization, followed by graft copolymerization with NIPAM via RAFT polymerization, well-defined graft copolymers (MOVEn-co-BVCTm)-g-NIPAMx (n = 62–73, m = 1–9, x = 19–214) were successfully obtained. However, no micelle formed in water above Tps of poly(NIPAM) graft chain unlike the case of block copolymers.  相似文献   
59.
Conventional water reclamation processes, such as membrane bioreactors, are not always effective in removal of pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and/or N-nitrosodimethylamine (NDMA), even with the reverse osmosis (RO) membrane process. A study was conducted, at a NEWater factory in Singapore, to compare a conventional ultrafiltration (UF) membrane /RO treatment process with a treatment train having the HiPOx unit, an advanced oxidation process (AOP), which was installed between the UF and the RO unit operations. By incorporating the HiPOx into the UF/RO treatment process, following results were observed; 1) increased removal of PPCPs, EDCs and NDMA, 2) improvement in ultraviolet transmission (UVT) of the RO permeate, 3) enhanced removal of TOC and color, and increased UVT of the RO brine, 4) suppression of the increase in the RO transmembrane pressure by organic fouling.  相似文献   
60.
N‐Phenylmaleimide–N‐(p‐hydroxy)phenylmaleimide–styrene terpolymer (HPMS), carrying reactive p‐hydroxyphenyl groups, was prepared and used to improve the toughness of cyanate ester resins. Hybrid modifiers composed of N‐phenylmaleimide–styrene copolymer (PMS) and HPMS were also examined for further improvement in toughness. Balanced properties of the modified resins were obtained by using the hybrid modifiers. The morphology of the modified resins depends on HPMS structure, molecular weight and content, and hybrid modifier compositions. The most effective modification of the cyanate ester resin was attained because of the co‐continuous phase structure of the modified resin. Inclusion of the modifier composed of 10 wt% PMS (Mw 136 000 g mol?1) and 2.5 wt% HPMS (hydroxyphenyl unit 3 mol%, Mw 15 500 g mol?1) led to 135% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and glass transition temperature, compared with the values for the unmodified resin. Furthermore, the effect of the curing conditions on the mechanical and thermal properties of the modified resins was examined. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified cyanate ester resin system. © 2001 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号