首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4699篇
  免费   316篇
  国内免费   4篇
电工技术   41篇
化学工业   1026篇
金属工艺   132篇
机械仪表   184篇
建筑科学   160篇
矿业工程   14篇
能源动力   243篇
轻工业   953篇
水利工程   16篇
石油天然气   34篇
无线电   512篇
一般工业技术   764篇
冶金工业   212篇
原子能技术   46篇
自动化技术   682篇
  2024年   24篇
  2023年   72篇
  2022年   75篇
  2021年   199篇
  2020年   142篇
  2019年   136篇
  2018年   212篇
  2017年   185篇
  2016年   220篇
  2015年   184篇
  2014年   214篇
  2013年   696篇
  2012年   188篇
  2011年   211篇
  2010年   227篇
  2009年   246篇
  2008年   140篇
  2007年   111篇
  2006年   103篇
  2005年   64篇
  2004年   47篇
  2003年   41篇
  2002年   52篇
  2001年   93篇
  2000年   94篇
  1999年   93篇
  1998年   128篇
  1997年   112篇
  1996年   56篇
  1995年   27篇
  1994年   23篇
  1993年   30篇
  1992年   15篇
  1990年   17篇
  1985年   17篇
  1984年   15篇
  1976年   18篇
  1924年   17篇
  1917年   14篇
  1916年   27篇
  1912年   12篇
  1909年   15篇
  1908年   12篇
  1907年   17篇
  1906年   14篇
  1905年   18篇
  1901年   13篇
  1900年   12篇
  1899年   13篇
  1898年   27篇
排序方式: 共有5019条查询结果,搜索用时 15 毫秒
61.
Summary Swelling equilibrium of polyelectrolyte copolymer gels containing of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) have been studied as a function of copolymer composition. AAm/AMPS hydrogels were prepared by free radical solution polymerization in aqueous solution of AAm with AMPS as anionic comonomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and trimethylolpropane triacrylate (TMPTA). Swelling experiments were performed in water at 25 °C, gravimetrically. The influence of AMPS content in hydrogels was examined. Swelling of AAm/AMPS hydrogels was increased up to 1018% (for containing 2% AMPS and crosslinked by EGDMA) 15246% (for containing 8% AMPS and crosslinked by TMPTA), while AAm hydrogels swelled up to 804% (crosslinked by TMPTA)–770% (crosslinked by EGDMA). The values of equilibrium water content of the hydrogels are 0.8851–0.9935. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non-Fickian in character.  相似文献   
62.
Poly(glycidyl methacrylate) (PGMA) beads with an average size of 350 μm were synthesized by suspension polymerization technique. The PGMA beads were first modified with iminodiacetonitrile (IDAN). Then, the IDAN‐modified beads were subsequently modified by hydroxylamine. The IDAN modification and the conversion of the nitrile groups to amidoxime were followed by FT‐IR spectroscopy. The surface morphology and thermal behavior of the PGMA and its modified forms were also characterized by scanning electron microscopy and thermogravimetric analysis techniques, further confirming modification and amidoximation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
63.
In situ esterifications of high-acidity rice bran oil with methanol and ethanol and with sulfuric acid as catalyst were investigated. In the esterification with methanol, all free fatty acids (FFA) dissolved in methanol were interesterified within 15 min, and it was possible to obtain nearly pure methyl esters. The amount of methyl esters obtained from a given rice bran was dependent on the FFA content of the rice bran oil. In the esterification with ethanol, it was not possible to obtain pure esters as in methanol esterification, because the solubilities of oil components in ethanol were much higher than those in methanol.  相似文献   
64.
An acid-activated clay (Çanakkale montmorillonite from Turkey) was used to adsorb chlorophyll from hexane solutions. The phenomenon seems to be mainly driven by the interaction of chlorophyll with acid sites. The adsorption of chlorophyll on Brönsted acid sites was indicated by a characteristic infrared band for the -OH group at 3671 cm?1. The variations in the structure of clay mineral and chlorophyll during adsorption have been examined by differential thermal analysis, thermogravimetry and infrared spectroscopy of the activated clay before and after adsorption of chlorophyll. Oxidation of adsorbed chlorophyll was completed at quite a high temperature.  相似文献   
65.
Adsorption properties of copolymers of acrylamide and mesaconic acid (CAME) in aqueous Basic Blue 12 (Nile blue chloride) solution have been investigated. Chemically crosslinked CAME hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), mesaconic(ME) acid, and water by free radical polymerization in aqueous solution, using a multifunctional crosslinker such as ethylene glycol dimethacrylate (EGDMA). Dynamic swelling tests in water was applied to the hydrogels. Weight swelling ratio (S) values have been calculated. Sorption of Basic Blue 12 (BB 12) onto CAME hydrogels was studied by batch sorption technique at 25°C. In the experiments of the sorption, L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (Ki), equilibrium constant (K), monolayer coverage (n), site‐size (u), and maximum fractional occupancy (Ô) for CAME hydrogels‐BB 12 binding system were calculated by using Klotz, Scatchard, and Langmuir linearization methods. Finally, the amount of sorbed BB 12 per gram of dry hydrogel (q) was calculated to be 2.28 × 10?6–7.91× 10?6 mol BB 12 per gram for hydrogels. Sorption % was changed range 16.09–58.86%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 405–413, 2006  相似文献   
66.
67.

Less-than-truckload (LTL) transportation offers fast, flexible and relatively low-cost transportation services to shippers. In order to cope with the effects of economic recessions, the LTL industry implemented ideas such as reducing excess capacity and increasing revenues through better yield management. In this paper, we extend these initiatives beyond the reach of individual carriers and propose a collaborative framework that facilitates load exchanges to reduce the operational costs. Even though collective solutions are proven to provide benefits to the participants by reducing the inefficiencies using a system-wide perspective, such solutions are often not attainable in real-life as the negotiating parties are seeking to maximize their individual profits rather than the overall profit and also they are unwilling to share confidential information. Therefore, a mechanism that enables collaboration among the carriers should account for the rationality of the individual participants and should require minimal information transfer between participants. Having this in mind, we propose a mechanism that facilities collaboration through a series of load exchange iterations and identifies an equilibrium among selfish carriers with limited information transfer among the participants. Our time-efficient mechanism can handle large instances with thousands of loads as well as provide significant benefits over the non-collaborative management of LTL networks.

  相似文献   
68.
Two phase-based nanocomposites consisting of dielectric barium titanate (BaTiO3 or BTO) and magnetic spinel ferrite Co0.5Ni0.5Nb0.06Fe1.94O4 (CNNFO) have been synthesized through solid state route. Series of (BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites with x content of 0.00, 0.25, 0.50, 0.75, and 1.00 were considered. The structure has been examined via X-rays diffraction (XRD) and indicated the occurrence of both perovskite BTO and spinel CNNFO phases in various nanocomposites. A phase transition from tetragonal BTO structure to cubic structure occurs with inclusion of CNNFO phase. The average crystallites size of BTO phase decreases, whereas that for the CNNFO phase increases with increasing x in various nanocomposites. The morphological observations revealed that the porosity is highly reduced, and the connectivity between grains is enhanced with increasing x content. The optical properties have been investigated by UV−vis diffuse reflectance spectroscopy. The deduced band gap energy (Eg) value is found to reduce with increasing the content of spinel ferrite phase. The magnetic as well as the dielectric properties were also investigated. The analysis showed that CNNFO ferrite phase greatly affects the magnetic properties and dielectric response of BTO material. The obtained findings can be useful to enhance the performances of magneto-dielectric composite-based systems.  相似文献   
69.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios.  相似文献   
70.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号