首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   16篇
  国内免费   3篇
电工技术   4篇
化学工业   58篇
金属工艺   7篇
机械仪表   9篇
建筑科学   5篇
能源动力   39篇
轻工业   24篇
水利工程   3篇
石油天然气   3篇
无线电   25篇
一般工业技术   83篇
冶金工业   18篇
原子能技术   6篇
自动化技术   72篇
  2023年   7篇
  2022年   14篇
  2021年   26篇
  2020年   23篇
  2019年   28篇
  2018年   23篇
  2017年   24篇
  2016年   21篇
  2015年   13篇
  2014年   18篇
  2013年   23篇
  2012年   13篇
  2011年   10篇
  2010年   13篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   2篇
  2005年   9篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   7篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
61.
Abstract

In this study, the physical–mechanical properties of ring spun, ring compact, rotor and air-vortex yarns were investigated. The study was carried with yarn having linear densities of 24.4 tex and 36.7 tex, which were then converted to woven fabrics. The ring spun yarns have higher values of strength but also with higher strength irregularities. Extra-ordinarily low hairiness was observed in air-vortex yarns due to its unique yarn formation technique. The deviation rate (DR) of yarns have correlation with the mass spectrogram of respective yarns obtained from USTER Tester 5. Rotor and air-vortex yarns exhibited higher coefficient of friction. The woven fabrics made from ring spun yarns exhibited higher tensile and tear strength with higher elongation at break. The fabrics made from air-vortex yarns have very good pilling grade due to less protruding fibres on their surface and good structural integrity.  相似文献   
62.
63.
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th,233U)O2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O2 pellets. In this study, fabrication of (Th,U)O2 mixed oxide pellets containing 3–5 wt.% UO2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.  相似文献   
64.
An optimized design for a 210 kg alloy, TiMn alloy based hydrogen storage system for stationary application is presented. A majority of the studies on metal hydride hydrogen systems reported in literature are based on system scale less than 10 kg, leaving questions on the design and performance of large-scale systems unanswered. On the basis of sensitivity to various design and operating parameters such as thermal conductivity, porosity, heat transfer coefficient etc., a comprehensive design methodology is suggested. Following a series of performance analyses, a multi-tubular shell and tube type storage system is selected for the present application which completes the absorption process in 900 s and the desorption process in 2000 s at a system gravimetric capacity of 0.7% which is a vast improvement over similar studies. The study also indicates that after fifty percent reaction completion, heat transfer ceases to be the major controlling factor in the reaction. This could help prevent over-designing systems on the basis of heat transfer, and ensure optimum system weight.  相似文献   
65.
Noise equivalent counts (NEC) have been used as a measure or proxy of PET image quality for many years. It has been shown to be a useful metric, for example to determine clinical patient dosage. However, NEC should be used cautiously in evaluating image quality since it is a global data quality measure that does not take into account localized effects due to spatial resolution and image reconstruction, as well as the effect of time-of-flight (TOF) imaging on resultant images. In this work, we study the use of a numerical observer that uses a generalized scan-statistic model to estimate lesion detectability with localization in a uniform background phantom, for varying activity levels and scan times. Data were acquired on a clinical whole-body TOF PET scanner. Data show that ALROC increases as a function of NEC but at high activity levels it approaches a peak value earlier than the NEC peak. Also, the ALROC for images acquired with the same NEC, but at two different activity levels and scan times, is similar. Our results show that with TOF information we can either achieve improved clinical performance for heavy patients, or reduce the scan time or injected activity while maintaining similar ALROC value as in a Non-TOF image.  相似文献   
66.
A series of silica–epoxy nanocomposites were prepared by hydrolysis of tetraethoxysilane within the organic matrix at different processing temperatures, i.e., 25 and 60 °C. Epoxy matrices reinforced with 2.0–10.0 wt% silica were subsequently crosslinked with an aliphatic diamine hardener to give optically transparent nanocomposite films. Interphase connections between silica networks and organic matrix were established by in situ functionalization of silica with 2.0 wt% γ-aminopropyltriethoxysilane (APTS). The microstructure of silica–epoxy nanocomposites as studied by transmission electron microscopy indicated the formation of very well-matched nanocomposites with homogeneous distribution of silica at relatively higher temperatures and in the presence of APTS. Thermogravimetric and static mechanical analyses confirmed considerable increase in thermal stability, stiffness, and toughness of the modified composite materials as compared to neat epoxy polymer and unmodified silica–epoxy nanocomposites. A slight improvement in the glass transition temperatures was also recorded by differential scanning calorimetry measurements. High temperature of hydrolysis during the in situ sol–gel process not only improved reaction kinetics but also promoted mutual solubility of the two phases, and consequently enhanced the interface strength. In addition, APTS influenced the size and distribution of the inorganic domain and resulted in better performance of the modified silica–epoxy nanocomposites.  相似文献   
67.
Carnobacterium maltaromaticum is a lactic acid bacterium isolated from soft cheese. The objective of this work was to study its potential positive impact when used in cheese technology. Phenotypic and genotypic characterization of six strains of C. maltaromaticum showed that they belong to different phylogenetic groups. Although these strains lacked the ability to coagulate milk quickly, they were acidotolerant. They did not affect the coagulation capacity of starter lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, used in dairy industry. The impact of C. maltaromaticum LMA 28 on bacterial flora of cheese revealed a significant decrease of Psychrobacter sp. concentration, which might be responsible for cheese aging phenomena. An experimental plan was carried out to unravel the mechanism of inhibition of Psychrobacter sp. and Listeria monocytogenes and possible interaction between various factors (cell concentration, NaCl, pH and incubation time). Cellular concentration of C. maltaromaticum LMA 28 was found to be the main factor involved in the inhibition of Psychrobacter sp. and L. monocytogenes.  相似文献   
68.
The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.  相似文献   
69.
Recently, photocatalysis has received huge attention in order to overcome energy crisis worldwide. Many semiconductors, potential schemes and hierarchies have come to light during past few decades to fabricate efficient catalysts however, among all these methods heterostructures have taken the world by surprise. With the advancement in post-graphene 2D materials, van der Waals heterostructures have come to light exploring enhancement in photocatalysis. During a very short period a number of ZnO-based van der Waal heterostructures have taken the limelight in the field of photocatalysis. First principles calculations and DFT approach towards the heterostructures of GeC, GaN, WSe2, WS2 and other layered 2D materials unleased a series of properties and facts for the provision of enhanced catalysis. Reduction in bandgap of ZnO has also been observed which widens the pathways towards visible light irradiation. However, energy applications of zinc oxide are also fascinating feature as it can serve as a photoanode to replace TiO2. Whereas the famous hydrogen production, batteries and solar cells have also been fabricated by the use of this semiconductor.  相似文献   
70.
Ho-substituted Li–Ni ferrites with composition L i1.2Ni0.4HoxFe2-xO4; 0≤ x ≤ 0.15 were synthesized by a self-ignited sol-gel process. An annealing temperature of 950 °C is estimated via thermal-gravimetric (TGA) analysis. X-ray diffraction (XRD) scans have confirmed the formation of the ferrite phase with a spinel structure in all samples. Substitution of Ho ions on the B-site significantly reduced the porosity from 38 -to 23% and the crystallite size from 23.4 -to 21.7 nm. Microstructural analysis revealed a denser structure with an increase in Ho content. Dielectric results showed that both the dielectric loss and dielectric constant depict a nonlinear variation with the addition of Ho. Complex impedance behavior with a single semicircle for all samples suggests the predominant effect of the grain boundary mechanism. The substitution of Ho ions in place of Fe ions significantly decreased the electrical conductivity. The anisotropic Ho3+ ions reinforce the L-S coupling which consequently enhanced the coercive force from 145 -to 389 Oe, and thus the anisotropy constant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号