首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   20篇
  国内免费   10篇
电工技术   11篇
化学工业   98篇
金属工艺   9篇
机械仪表   13篇
建筑科学   1篇
能源动力   17篇
轻工业   36篇
水利工程   1篇
石油天然气   5篇
无线电   29篇
一般工业技术   169篇
冶金工业   21篇
原子能技术   2篇
自动化技术   41篇
  2024年   1篇
  2023年   10篇
  2022年   20篇
  2021年   21篇
  2020年   10篇
  2019年   18篇
  2018年   16篇
  2017年   25篇
  2016年   16篇
  2015年   15篇
  2014年   10篇
  2013年   32篇
  2012年   21篇
  2011年   34篇
  2010年   19篇
  2009年   20篇
  2008年   11篇
  2007年   16篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   12篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   11篇
  1986年   16篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有453条查询结果,搜索用时 15 毫秒
81.
The bone implants used in tissue repair are susceptible to infections caused by staphylococci, specifically Staphylococcus aureus. Hence, the development of better biological materials that provide antimicrobial activity in bone tissue engineering is required. The nanoparticles of hydroxyapatite (nHAp) and nHAp dopped with Zn (nHAp-Zn) were prepared by the wet chemical method and the ion exchange method, respectively. They were characterized using SEM, AFM, FTIR and XRD. The antibacterial activity of nHAp and nHAp-Zn was determined with Gram-negative and Gram-positive bacterial strains. The results indicated that nHAp alone was acting as an inert matrix and when substituted with Zn, it showed better antibacterial activity. The nHAp-Zn was found to be non-toxic to osteoprogenitor cells. Thus, due to the antimicrobial property of nHAp-Zn nanoparticles, we suggest that they would have potential applications towards bone tissue engineering.  相似文献   
82.
Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.  相似文献   
83.
This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching surface. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equation corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. It is found that with the increase of magnetic field intensity the fluid velocity decreases but the temperature increases at a particular point of the heated stretching surface. Impact of chemical reaction in the presence of thermal radiation plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   
84.
Aluminium alloy 5083, widely used in marine applications, undergoes accelerated corrosion in sea water due to the aggressive reaction of chloride ions with the secondary phase particles and other intermetallics present in the alloy matrix. The corrosion rate of the alloy is also influenced by the temperature difference between the alloy and its environment. Friction stir processing (FSP) is a recent solid state processing technique for improving the surface properties of metals and alloys. In this study, an attempt has been made to explore the possibility of improving the corrosion resistance of AA5083 by FSP. FSP trials were performed by varying the tool rotation speed, tool traverse speed and shoulder diameter of the tool, as per face centered central composite design. The corrosion potential and the corrosion rate of friction stir processed AA5083 was studied using potentiodynamic polarization studies, at three different temperatures. Mathematical models based on polynomial—radial basis function were developed and used to study the effect of process parameters on the corrosion potential and the corrosion rate of friction stir processed AA5083. FSP resulted in refinement of the grain structure, dispersion and partial dissolution of secondary phase particles in the matrix, which increased the corrosion resistance of the alloy.  相似文献   
85.
Abstract

Bi-fuel conversions are a common alternative fuelling option for mono-fuel gasoline SI vehicles because of the minor vehicle modifications required. In Malaysia, most bi-fuel vehicles are fuelled with compressed natural gas (CNG) and gasoline. However, CNG flame speed is lower than gasoline reducing the power and range of the vehicle when operating on CNG. This situation can be improved by increasing the flame speed via higher swirl generation. A Computational fluid dynamics model is used to analyse swirl generated by dissimilar valve lift (DVL) profiles on the intake valve. A three-dimensional engine simulation shows differences in swirl motion and turbulence between the original symmetric valve lift profile and the DVL. The higher swirl number reduces the turbulence kinetic energy level slightly. The best case profile is selected for further experimental testing.  相似文献   
86.
ABSTRACT

The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.  相似文献   
87.
MicroRNAs (miRNAs) have crucial functions in many cellular processes, such as differentiation, proliferation and apoptosis; aberrant expression of miRNAs has been linked to human diseases, including cancer. Tools that allow specific and efficient knockdown of miRNAs would be of immense importance for exploring miRNA function. Zebrafish serves as an excellent vertebrate model system to understand the functions of miRNAs involved in a variety of biological processes. We designed and employed a strategy based on locked nucleic acid enzymes (LNAzymes) for in vivo knockdown of miRNA in zebrafish embryos. We demonstrate that LNAzyme can efficiently knockdown miRNAs with minimal toxicity to the zebrafish embryos.  相似文献   
88.
89.
A new method to detect component faults in analog circuits is proposed in this paper. Network parameters like driving point impedance, transfer impedance, voltage gain and current gain are used to detect component faults in analog circuits as these network parameters are sensitive to the components of the circuit. Using montecarlo simulation each component of the circuit is varied within its tolerance limit and the minimum and the maximum values of each network parameter are found for fault free circuit. At the time of testing, the network parameters are found for the injected fault and if any one or more network parameters is exceeding its predetermined bound limits then the circuit is confirmed faulty. The proposed method is validated through second order Sallenkey band pass filter and fourth order Chebyshev low pass filter circuits. Numerical results are presented to clarify the proposed method and prove its efficiency.  相似文献   
90.
Europium doped cadmium sulphide (Cd(0.98)Eu(0.2)S) nanostructures were synthesised by chemical co-precipitation method using ethylene glycol (EG) and deionized water (Eu:CdS-1), and isopropyl alcohol (IPA) and deionized water (Eu:CdS-2) as mixed solvents. It has been found that the nanostructure of the europium doped CdS can be controlled by simply varying the mixed solvent system. Powder XRD pattern reveals the formation of hexagonal (wurtzite) and cubic (zinc blende) structure for Eu:CdS-1, and Eu:CdS-2, respectively. The crystallite size of the sample prepared using IPA and deionized water was measured to be 2.64 nm which is much smaller than that of the sample prepared using EG and deionized water as mixed solvent (3.65 nm). Morphology of the materials can also be changed from flower shaped crystals to paddy like structures by varying the mixed solvents. Band gap values of Eu3+ doped CdS nanocrystals synthesized from two different solvents were estimated using UV-reflectance spectra. The size and crystallinity of the samples were confirmed by HRTEM and SAED analysis. A significant change in the PL emission of the CdS nanocrystals was observed for the europium doped CdS which is mainly due to the presence of EU3+ ions which also play a significant role in the energy transfer process. It was also observed that the shift in the emission and efficiency depends on size and shape of the synthesised nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号