首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   149篇
  国内免费   15篇
电工技术   22篇
综合类   23篇
化学工业   379篇
金属工艺   62篇
机械仪表   71篇
建筑科学   33篇
能源动力   130篇
轻工业   205篇
水利工程   22篇
石油天然气   20篇
无线电   215篇
一般工业技术   419篇
冶金工业   125篇
原子能技术   34篇
自动化技术   267篇
  2024年   5篇
  2023年   54篇
  2022年   84篇
  2021年   155篇
  2020年   104篇
  2019年   107篇
  2018年   145篇
  2017年   119篇
  2016年   99篇
  2015年   71篇
  2014年   105篇
  2013年   162篇
  2012年   101篇
  2011年   108篇
  2010年   70篇
  2009年   58篇
  2008年   39篇
  2007年   34篇
  2006年   30篇
  2005年   15篇
  2004年   30篇
  2003年   16篇
  2002年   23篇
  2001年   17篇
  2000年   8篇
  1999年   15篇
  1998年   38篇
  1997年   30篇
  1996年   21篇
  1995年   16篇
  1994年   16篇
  1993年   17篇
  1992年   12篇
  1991年   11篇
  1990年   3篇
  1989年   13篇
  1988年   16篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有2027条查询结果,搜索用时 78 毫秒
41.
This article explains production of nickel nanoparticles through a micro-electrical discharge machining (EDM) process with a combination of different process parameters. The production of nickel nanoparticles was carried out in a dielectric medium (deionized water) with developed micro-EDM while polyvinyl alcohol worked as the stabilizing agent. The characterization of nickel nanoparticle was done by scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), UV–Vis spectroscopy, and Fourier transform infrared (FTIR) analysis. From this investigation, the mean crystal size of the nickel nanoparticles was found to be in the range of 15–20?mm for a pulse-on time variation of 2–0.3?µs and the crystal size was found to decrease with the decrease of pulse-on time. It was also observed that with this decrease, the shape and size of nickel nanoparticles change from spherical to needle-like. The dispersion stability of nickel nanofluid was determined by viscosity measurements and the dynamic viscosity was noted to decrease by decreasing the pulse duration. From the FTIR spectrum results, it was confirmed that the synthesized nickel nanoparticles in deionized water were pure and monolithic. UV–Vis–NIR spectroscopy depicted that the band gap energy increases with a reduction in the pulse-on time and obtains a higher band gap (5.31?eV) for 0.3?µs pulse-on time.  相似文献   
42.
43.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
44.
To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano‐scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO‐NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X‐ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn–O peak has been observed around 363 nm using ultra‐violet–visible spectroscopy. Fourier‐transform infrared spectroscopy examination has also confirmed the formation of ZnO‐NS through detection of Zn–O bond vibration frequencies. To check the superior antibacterial activity of ZnO‐NS, the authors'' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO‐NS are non‐hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.Inspec keywords: nanomedicine, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, scanning electron microscopy, X‐ray diffraction, antibacterial activity, transmission electron microscopy, particle size, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, enzymes, biochemistry, molecular biophysics, microorganisms, drugs, toxicology, bonds (chemical), semiconductor growth, nanofabrication, vibrational modesOther keywords: green synthesised zinc oxide nanostructures, Periploca aphylla extract, antibacterial potential, multidrug resistant pathogens, multidrug resistant bacterial infections, antibacterial nanomedicines, P. aphylla aqueous extract, structural examinations, scanning electron microscopy, X‐ray diffraction, pure phase morphology, homogenised average particle size, SEM, transmission electron microscopy, Fourier‐transform infrared spectroscopy, bond vibration frequency, antibacterial activity, disc diffusion assay, colony forming unit testing, S. marcescens, E. cloacae, E. coli, ultraviolet‐visible spectroscopy, protein kinase inhibition assay, cytotoxicity, lethal infections, ZnO  相似文献   
45.
46.
47.
The CdO NPs was synthesized using the sol–gel method and the nanoparticles were characterized using an UV–Vis spectrophotometer, with shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg’s law and confirmed the crystalline nature of CdO nanoparticles. From the XRD, the average size of CdO NPs was found to be around 41 nm. The photoluminescence spectra of the CdO NPs, as recorded at room temperature, were excited at 300 nm wavelength. The broad emission peaks were between 600 and 650 nm (orange emission). The optical limiting performance of the nanocomposite was described in the sol–gel state. Also, this study has observed and studied the diffraction rings generated in CdO NPs using the same CW laser. The number of rings increases almost exponentially with an increasing volume fraction of SiO2 in the nanocomposites. The refractive index change, Δn, and effective nonlinear refractive index, n 2, were found to be 10?4 and 10?8 cm2/W, respectively. The effective nonlinear refractive index, n 2, was determined based on the observed number of rings. The threshold values of the CdO, CdO–2SiO2 and CdO–5SiO2 nanocomposites are 7.1, 6.55 and 6.34 mW, respectively. This large nonlinearity is attributed to the thermal effect. The present studies suggest that the nanocomposite is a potential candidate for optical device applications such as the optical limiters. The thermal blooming technique was applied to evaluate the thermo-optic coefficient and thermal diffusivity of the CdO NPs. In the thermal blooming experimental setup a transistor–transistor logic modulated CW laser of wavelength 532 nm was used as the excitation source.  相似文献   
48.
Warm-Mix Asphalt (WMA) is a widely used product, which proved a contribution to the reduction in asphalt mixing and compaction temperatures. This reduction leads to lower fuel consumption and smoke emission in asphalt plants. Most of the characterisation of binders used in WMA has focused in the past on measuring linear viscoelastic properties and associated Superpave parameters. Several studies have shown that the average stresses and strains of the asphalt mixture remain mostly within the linear viscoelastic response. However, localised strains in the binder phase of the mixture could reach values high enough to induce nonlinear viscoelastic and viscoplastic deformations. Therefore, this study focuses on an experimental and analytical evaluation of linear, nonlinear viscoelastic and viscoplastic responses of selected binders modified for use in WMA. The first part of the paper analyses the linear viscoelastic material properties and their ability to evaluate permanent deformation resistance. Then, the non-recoverable creep compliance parameter obtained from the Multiple Stress Creep Recovery (MSCR) test is analysed to assess the nonlinear response and permanent deformation of asphalt binders. The paper utilises a nonlinear plasto-viscoelastic (NPVE) approach to assess and quantify the nonlinear plasto-viscoelastic response of binders by separating the recoverable and irrecoverable strains measured in the MSCR test. Two WMA additives were included in this study by mixing them with polymer-modified and unmodified asphalt binders. Analysis of results showed that the NPVE approach captured a higher percentage of recovery than the NLVE approach. However, binder’s performance evaluation and ranking did not change by adopting the NPVE approach. The nonlinear viscoelastic parameters provided insight on the behaviour of asphalt binders mixed with WMA additives during loading cycles. Sasobit showed higher influence than Advera on binders in resisting permanent deformation by increasing the recoverable strain during the unloading phase.  相似文献   
49.
A substitution box (S-Box) is a crucial component of contemporary cryptosystems that provide data protection in block ciphers. At the moment, chaotic maps are being created and extensively used to generate these S-Boxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts. In this paper, the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach. The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their working makes both of these dynamic in nature. The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort. Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box. Comparative analysis and exploration confirmed that the projected chaotic map exhibits a significant amount of chaotic complexity. The security assessment in terms of bijectivity, nonlinearity, bits independence, strict avalanche, linear approximation probability, and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults. The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications. The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security.  相似文献   
50.
An automated pilot plant has been designed and commissioned to carry out online/real-time data acquisition and control for the Cr6+–Fe2+ reduction process. Simulated data from the Cr6+–Fe2+ model derived are validated with online data and laboratory analysis using ICP-AES analysis method. The distinctive trend or patterns exhibited in the ORP profiles for the non-equilibrium model derived have been utilized to train neural network-based controllers for the process. The implementation of this process control is to ensure sufficient Fe2+ solution is dosed into the wastewater sample in order to reduce all Cr6+–Cr3+. The neural network controller has been utilized to compare the capability of set-point tracking with a PID controller in this process. For this process neural network-based controller dosed in less Fe2+ solution compared to the PID controller which hence reduces wastage of chemicals. Industrial Cr6+ wastewater samples obtained from an electro-plating factory has also been tested on the pilot plant using the neural network-based controller to determine its effectiveness to control the reduction process for a real plant. The results indicate the proposed controller is capable of fully reducing the Cr6+–Cr3+ in the batch treatment process with minimal dosage of Fe2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号