首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   29篇
  国内免费   1篇
电工技术   11篇
综合类   1篇
化学工业   127篇
金属工艺   13篇
机械仪表   11篇
建筑科学   34篇
能源动力   14篇
轻工业   37篇
石油天然气   1篇
武器工业   1篇
无线电   41篇
一般工业技术   161篇
冶金工业   58篇
原子能技术   3篇
自动化技术   72篇
  2023年   8篇
  2022年   6篇
  2021年   20篇
  2020年   16篇
  2019年   12篇
  2018年   10篇
  2017年   15篇
  2016年   16篇
  2015年   18篇
  2014年   20篇
  2013年   50篇
  2012年   29篇
  2011年   34篇
  2010年   23篇
  2009年   21篇
  2008年   23篇
  2007年   21篇
  2006年   18篇
  2005年   22篇
  2004年   20篇
  2003年   17篇
  2002年   17篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1995年   10篇
  1993年   4篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1979年   3篇
  1978年   5篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1966年   3篇
  1938年   3篇
  1937年   3篇
  1928年   2篇
  1913年   3篇
  1912年   2篇
排序方式: 共有585条查询结果,搜索用时 31 毫秒
71.
Capillary electrophoresis (CE) methods for the determination of fexofenadine (FEX) in commercial pharmaceuticals were developed. It was demonstrated that FEX could be effectively analyzed in free solution cationic CE at low pH. Another analytical approach studied was based on cyclodextrin (CD) modified CE where highly charged CD derivatives served as analyte carriers. In this way, the separation range was spread to physiological pH region and a CE analysis of FEX, present actually in its zwitterionic form, could be accomplished. Several parameters affecting the separations were studied, including the type and concentration of carrier ion, counterion, analyte carrier, and pH of the buffer. The methods based on the free solution CE and CD-modified CE were compared each other, validated, and applied for the determination of FEX in tablets.  相似文献   
72.
How do living organisms attain the complicated shapes of grown bio‐composites? This question is answered when studying the mechanics of the nacre layer in the bivalve mollusk shells. In this study, the internal strains/stresses across the shell thickness are profiled as a function of depth by strain gauge measurements during controlled etching in the selected areas. Measurements of stress release under etching provide clear evidence that the investigated shells, in fact, are strained multilayered structures, which are elastically bent due to the forces evolving at the organic/inorganic interfaces. The stresses are mostly concentrated in the “fresh” nacre sub‐layers near the inner surface of the shell adjacent to the mollusk mantle. This analysis unexpectedly shows that the elastic bending of the nacre layer is due to strain gradients which are originated in the gradual in‐depth changes of the thickness of ceramic lamellae. The changes mentioned were directly observed by scanning electron microscopy. By this sophisticated design of the ultra‐structure of the nacre layer, the bowed shape of the bivalve shells is apparently achieved.  相似文献   
73.
4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH) was first reported as a potent and selective serotonin 2A receptor (5-HT2AR) agonist in 2014, and it has since found extensive use as a pharmacological tool in a variety of in vitro, ex vivo and in vivo studies. 25CN-NBOH is readily available from a synthetic perspective using standard chemical transformations, and displays favorable physiochemical properties in terms of stability and solubility. Due to its superior selectivity for 5-HT2AR, 25CN-NBOH has been used to investigate the effects of selective 5-HT2AR activation in vivo, and has thus become an important pharmacological tool for the exploration of 5-HT2AR signaling in a range of animal models. In the present review, we outline the discovery of 25CN-NBOH, its pharmacological profile and major findings from studies where it has been used.  相似文献   
74.
Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters–ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.  相似文献   
75.
The jerky motion of twin boundaries in the ferromagnetic shape memory alloy Ni-Mn-Ga is studied by simultaneous measurements of stress and magnetic emissions (ME). A careful design of the experimental conditions results in an approximately linear relationship between the measured ME voltage and the nm-scale volumes exhibiting twinning transformation during microsecond-scale abrupt “avalanche” events. This study shows that the same distributions of ME avalanches, related to features of jerky twin boundary motion, are found both during and between stress drop events. Maximum likelihood analysis of statistical distributions of several variables reveals a good fit to power laws truncated by exponential functions. Interestingly, the characteristic cutoffs described by the exponential functions are in the middle of the distribution range. Further, the cutoff values can be related to the physical characteristics of the studied problem. Particularly, the cutoff of amplitudes of ME avalanches matches the value predicted by high rate magnetic pulse tests performed under much larger driving force values. This observation implies that avalanches during slow rate twin boundary motion and velocity changes observed by high rate tests represent the same behavior and can be described by the same theory.  相似文献   
76.
Functional properties of 2D materials like graphene can be tailored by designing their 3D structure at the Angstrom to nanometer scale. While there are routes to tailoring 3D structure at larger scales, achieving controllable sub-micron 3D deformations has remained an elusive goal since the original discovery of graphene. In this contribution, we summarize the state-of-the-art in controllable 3D structures, and present our perspective on pathways to realizing atomic-scale control. We propose an approach based on strategic application of mechanical load to precisely relocate and position topological defects that give rise to curvature and corrugation to achieve a desired 3D structure. Realizing this approach requires establishing the detailed nature of defect migration and pathways in response to applied load. From a computational perspective, the key needed advances lie in the identification of defect migration mechanisms. These needed advances define new forward and inverse problems: when a fixed stress or strain field is applied, along which pathways will defects migrate?, and vice versa. We provide a formal statement of these forward and inverse problems, and review recent methods that may enable solving them. The forward problem is addressed by determining the potential energy surface of allowable topological configurations through Monte Carlo and Gaussian process models to determine defect migration paths through dynamic programming algorithms or Monte Carlo tree search. Two inverse models are suggested, one based on genetic algorithms and another on convolutional neural networks, to predict the applied loads that induce migration and position defects to achieve desired curvature and corrugation. The realization of controllable 3D structures enables a vast design space at multiple scales to enable new functionality in flexible electronics, soft robotics, biomimetics, optics, and other application areas.  相似文献   
77.
A tubular micromotor with spatially resolved compartments is presented toward efficient site-specific cargo delivery, with a back-end zinc (Zn) propellant engine segment and an upfront cargo-loaded gelatin segment further protected by a pH-responsive cap. The multicompartment micromotors display strong gastric-powered propulsion with tunable lifetime depending on the Zn segment length. Such propulsion significantly enhances the motor distribution and retention in the gastric tissues, by pushing and impinging the front-end cargo segment onto the stomach wall. Once the micromotor penetrates the gastric mucosa (pH ≥ 6.0), its pH-responsive cap dissolves, promoting the autonomous localized cargo release. The fabrication process, physicochemical properties, and propulsion behavior are systematically tested and discussed. Using a mouse model, the multicompartment motors, loaded with a model cargo, demonstrate a homogeneous cargo distribution along with approximately four-fold enhanced retention in the gastric lining compared to monocompartment motors, while showing no apparent toxicity. Therapeutic payloads can also be loaded into the pH-responsive cap, in addition to the gelatin-based compartment, leading to concurrent delivery and sequential release of dual cargos toward combinatorial therapy. Overall, this multicompartment micromotor system provides unique features and advantages that will further advance the development of synthetic micromotors for active transport and localized delivery of biomedical cargos.  相似文献   
78.
New polyurethane cationomers synthesized by a two‐step substitution postreaction of urethane hydrogen atoms with nitroazobenzene groups were studied. As a starting polymer, a polyurethane based on poly(tetramethylene oxide)diol, isophorone diisocyanate, and 2,6‐bis(hydroximethyl)pyridine was used. After a preliminary metalation of the above polymer with natrium hydride, by reaction of polyurethane N‐sodate with 4‐nitro‐4′(β–iodoethylurethane)azobenzene, chromophoric groups between 2.85 and 10.53 wt % could be incorporated instead of hydrogen. Such polymers partially functionalized with azobenzene and further quaternized with methyl iodide led to the formation of pyridinium polyurethane cationomers N‐modified with nitroazo groups. The photosensible properties of the azobenzene chromophore in a polymer solution and film state indicated important differences in their photoresponse. In the polymer solution, the transcis photoisomerization of the chromophore is accompanied by an irreversible photobleaching effect, while under the same UV irradiation conditions, the ionomeric films exhibited an enhanced photostability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1240–1247, 2002  相似文献   
79.
Subcritical crack growth in terms of velocity–stress intensity factor ( v – K ) curves in lead zirconate titanate (PZT) were experimentally characterized on poled and unpoled compact tension specimens. The poled specimens were tested under open- and short-circuit electrical boundary conditions, which resulted in an increase in fracture toughness by 0.2 MPa·m1/2 for the accessible velocity range ( v = 10−9 to 10−4 m/s) in the open-circuit case. Subcritical crack growth of unpoled specimens was obtained under ambient (relative humidity = 35%) and dry (relative humidity ∼ 0.02%) conditions over a regime in stress intensity factor of 0.5 MPa·m1/2.  相似文献   
80.
The tropical diseases human African trypanosomiasis, Chagas disease, and the various forms of leishmaniasis are caused by parasites of the family of trypanosomatids. These protozoa possess a unique redox metabolism based on trypanothione and trypanothione reductase (TR), making TR a promising drug target. We report the optimization of properties and potency of cyclohexylpyrrolidine inhibitors of TR by structure‐based design. The best inhibitors were freely soluble and showed competitive inhibition constants (Ki) against Trypanosoma (T.) brucei TR and T. cruzi TR and in vitro activities (half‐maximal inhibitory concentration, IC50) against these parasites in the low micromolar range, with high selectivity against human glutathione reductase. X‐ray co‐crystal structures confirmed the binding of the ligands to the hydrophobic wall of the “mepacrine binding site” with the new, solubility‐providing vectors oriented toward the surface of the large active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号