首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2689篇
  免费   66篇
  国内免费   16篇
电工技术   164篇
综合类   4篇
化学工业   610篇
金属工艺   114篇
机械仪表   60篇
建筑科学   41篇
能源动力   108篇
轻工业   175篇
水利工程   10篇
石油天然气   5篇
无线电   272篇
一般工业技术   544篇
冶金工业   436篇
原子能技术   90篇
自动化技术   138篇
  2023年   10篇
  2021年   35篇
  2020年   25篇
  2019年   19篇
  2018年   36篇
  2017年   33篇
  2016年   33篇
  2015年   33篇
  2014年   62篇
  2013年   130篇
  2012年   61篇
  2011年   128篇
  2010年   99篇
  2009年   102篇
  2008年   118篇
  2007年   100篇
  2006年   107篇
  2005年   112篇
  2004年   69篇
  2003年   70篇
  2002年   77篇
  2001年   47篇
  2000年   62篇
  1999年   73篇
  1998年   190篇
  1997年   128篇
  1996年   98篇
  1995年   68篇
  1994年   62篇
  1993年   49篇
  1992年   35篇
  1991年   38篇
  1990年   33篇
  1989年   31篇
  1988年   35篇
  1987年   29篇
  1986年   30篇
  1985年   30篇
  1984年   28篇
  1983年   38篇
  1982年   25篇
  1981年   29篇
  1980年   23篇
  1979年   28篇
  1978年   23篇
  1977年   17篇
  1976年   14篇
  1974年   6篇
  1973年   6篇
  1972年   8篇
排序方式: 共有2771条查询结果,搜索用时 15 毫秒
51.
52.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs), particularly “amine-immobilized porous silicates”, are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-functionalized mesoporous silicates such as AP-MCM-41 gives the product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The precursors of the mesoporous silicates are more active than those of microporous silicates. This material can be repeatedly used without significant loss of activity. High activity is not due to the leached species. The active sites of the SOCM catalysts are considered to be SiO moieties located on the pore-mouth. Activity of the SOCM increases when the reaction is carried out without solvent, whereas decrease in activity of the OFMS is observed in the solvent-free system.  相似文献   
53.
Alginate hydrogel has widespread applications in tissue engineering, cancer therapy, wound management and drug/cell/growth factor delivery due to its biocompatibility, hydrated environment and desirable viscoelastic properties. However, the lack of controllability is still an obstacle for utilizing it in the fabrication of 3D tissue constructs and accurate targeting in mass delivery. Here, we proposed a new method for achieving magnetic alginate hydrogel microfibers by dispersing magnetic nanoparticles in alginate solution and solidifying the magnetic alginate into hydrogel fiber inside microfluidic devices. The microfluidic devices have multilayered pneumatic microvalves with hemicylindrical channels to fully stop the fluids. In the experiments, the magnetic nanoparticles and the alginate solution were mixed and formed a uniform suspension. No aggregation of magnetic nanoparticles was found, which is crucial for flow control inside microfluidic devices. By regulating the flow rates of different solutions with the microvalves inside the microfluidic device, magnetic hydrogel fibers and nonmagnetic hydrogel fibers were fabricated with controlled sizes. The proposed method for fabricating magnetic hydrogel fiber holds great potential for engineering 3D tissue constructs with complex architectures and active drug release.  相似文献   
54.
Natural graphite particles with high crystallinity sieved to obtain a particle size range of under 63 μm were ground with a ball mill, under various well-controlled grinding atmospheres such as N2, O2, He, H2, and vacuum. The ratio, Xdif50/Xst50, i.e. between the 50 wt.% Stokes diameter and the 50 wt.% laser diffraction diameter, of the ground particles, was used as an index of the flakiness of the particles. The specific resistance of films composed of the ground graphite particles was systematically measured. The rate of reduction in the size of the particles by grinding was slow under an O2-rich atmosphere such as 100% O2 and dry air. On the other hand, it was relatively fast in vacuum, or under an N2 or He atmosphere, and a gas mixture of 99% N2 and 1% O2. The rate of size reduction by grinding under a H2 atmosphere was intermediate. In our experimental conditions, the flakiness of the ground particles increased with the decrease in the particles’ sizes. The electrical conductivity of the ground particles, however, tended to decrease with the decrease in their sizes. Under the condition that the Stokes diameter of the ground particles remains constant, the electrical conductivity of films made from the ground particles increases with the increase in the flakiness of the particles. It was finally determined from our systematic grinding experiments that small flaky particles, which had a size, Xst of ∼1 μm, with a high electrical conductivity can be produced by grinding in a gas mixture of 99% N2 and 1% O2. In this case, the flaky shape of the ground particles was visually confirmed by scanning electron microscopy.  相似文献   
55.
An in situ composite composed of ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP) and La{Co0.5Fe0.5(Fe0.9Al0.1)11}O19 was synthesized from a powder mixture of Ce-TZP, La(Fe0.9Al0.1)O3, Fe2O3, Al2O3, and CoO. The dense Ce-TZP dispersed with platelike La{Co0.5Fe0.5(Fe0.9Al0.1)11}O19 crystals as a second phase were formed after sintering from 1250° to 1350°C. The saturation magnetization of the in situ composite Ce-TZP/La{Co0.5Fe0.5(Fe0.9Al0.1)11}O19 was proportional to the mass fraction of the hexaferrite second phase in Ce-TZP. The coercivity of the composite with a 20 mass% of second phase decreased from 9.14 to 2.52 kOe (from 728 to 201 kA/m) after the pulverization of the composite. The susceptibility (χ) increased by 15%–25% under uniaxial stress on the composite. The change of the susceptibility (Δχ/χ) value increased with decreasing the mass fraction of the second phase in the composite. The Δχ was found to increase linearly with applied stress and abruptly change on cracking, which is expected for the application in fracture sensing of the composite.  相似文献   
56.
A series of novel hexene‐1–propylene random copolymers with isotactic sequence of propylene was synthesized with a MgCl2‐supported Cr(acac)3 catalyst. The molecular weight distribution of copolymers and homopolymers was considerably narrower than that of typical polyolefins produced by heterogeneous Ziegler–Natta catalysts. The crystallizability of the copolymers having a propylene‐unit content of more than 50 mol % drastically decreased with decreasing propylene‐unit content, and the copolymers with a propylene content of less than 50 mol % were completely amorphous. In the present novel type of random copolymers with crystallizable and noncrystallizable units, a single glass transition was observed between pure polypropylene and polyhexene‐1, and a major component was found to govern the final morphology and the mechanical characteristics. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2949–2954, 2004  相似文献   
57.
A dry developable negative working resist composition comprised of poly(methyl isopropenyl ketone) (PMIPK) and 4-methyl-2,6-di(4′-azido-benzylidene) cyclohexanone-1 was examined. The main photochemical product formed in the resist pattern was found to be a secondary amine which crosslinks PMIPK. Post-annealing forms a hydrogen-bonded product which shows a powerful electronic excitation energy quenching effect. The quencher is more powerful than the aromatic compound arising from the azide by post-annealing only. The residual resist thickness of the negative pattern is about 80 percent of the initial thickness of the coating in spite of all the azide compound remaining in the resist coating. The obtained dry developed resist pattern has a high dry etch resistance. Etchings of Si and SiO2 were performed by plasma and reactive ion etching, respectively.  相似文献   
58.
Forsterite (Mg2SiO4) ceramics were prepared using Mg(OH)2 and SiO2 as precursors, and the effect of powder characteristics of Mg(OH)2 on calcination and sintering was investigated. The use of highly dispersed Mg(OH)2 powder (HD powder) resulted in a lower calcination temperature. Forsterite powder of high homogeneity and small particle size prepared from the HD powder enabled synthesis of high-density forsterite ceramics by ordinary sintering without applying external pressure. Moreover, transparent forsterite ceramics were successfully synthesized through addition of excess Mg to the precursors to compensate for Mg evaporated during the sintering process. Subsequent dielectric measurements revealed that the transparent forsterite ceramics had a very low dielectric loss (tan δ<10−4).  相似文献   
59.
Two models have been proposed to explain the mechanical strength increase of abraded or indented soda–lime glasses upon aging, namely, crack tip blunting and the release of residual tensile stress near the crack tip. To clarify the mechanism, the time dependence of the strengthening of an abraded soda–lime glass was investigated. Effects of aging media, such as moist air, distilled water, 1 N HCI and 1 N NaOH solutions, as well as the abrasion flaw depth, were determined. The strength increase rate in water of abraded soda–lime glass was compared with those of borosilicate and high-silica glasses. The effect of stressing during aging was also investigated. It was found that the rate of strength increase was faster with decreasing abrasion flaw depth and with decreasing chemical durability. For a given flaw depth, an acidic solution produced the fastest strengthening. The strengthening rate was found to accelerate because of the "coaxing'effect of stressing during aging. From these observations, it was concluded that the strengthening rates relate to the diffusion process and chemical reactions, especially the alkali–hydrogen (or hydronium) ion-exchange reaction, near the crack tip. The role of the residual tensile stress appears to be similar to that of the applied tensile stress, helping the diffusion process near the crack tip. The observed strength increase of soda–lime glass by aging was thus attributed to the effective blunting of the crack tip geometry by the glass–water reaction.  相似文献   
60.
Wetting phenomena and the effect of alumina surface orientation on the wettability in Si/α-Al2O3 system were studied by an improved sessile drop method using     ,     , C(0001) faces of single crystals and polycrystals at 1723 K in a reducing Ar–3% H2 atmosphere. The contact angles show a vibration behavior for all the single crystals but to a less extent for the polycrystals. The extent of the vibration correlates not only with the reaction intensity but also with the stability of the Si droplet on the alumina surfaces. The interfacial reaction leads to the formation of a series of reaction rings, which is more serious at the single crystal surfaces. More importantly, the wettability is dependent on the alumina surface orientation, with the intrinsic contact angles being about 98±2°, 101±1°, 69±1°, and 98±2°, respectively, for the     ,     , C(0001) and polycrystal α-Al2O3 substrates. The much smaller contact angle for molten Si on the C(0001) surface is explained by the favorable reduction in the Si/α-Al2O3 interfacial free energy by the terminated and enriched aluminum atoms at the reconstructed     surface. The importance of the aluminum presence at the Si/α-Al2O3 interface to the wettability of this system was further demonstrated by a substantial improvement in the wettability of the     α-Al2O3 substrates by Si–Al alloys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号