首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   12篇
电工技术   2篇
综合类   1篇
化学工业   30篇
金属工艺   3篇
机械仪表   1篇
建筑科学   1篇
能源动力   6篇
轻工业   22篇
无线电   11篇
一般工业技术   26篇
冶金工业   5篇
原子能技术   1篇
自动化技术   8篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   3篇
  2013年   9篇
  2012年   15篇
  2011年   8篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2005年   2篇
  2002年   2篇
  1998年   1篇
排序方式: 共有117条查询结果,搜索用时 125 毫秒
81.
Efficient characterization of semiconductor nanowires having complex dopant profiles or heterostructures is critical to fully understand these materials and the devices built from them. Existing electrical characterization techniques are slow and laborious, particularly for multisegment nanowires, and impede the statistical understanding of highly variable samples. Here, it is shown that electro‐orientation spectroscopy (EOS)—a high‐throughput, noncontact method for statistically characterizing the electrical properties of entire nanowire ensembles—can determine the conductivity and dimensions of two distinct segments in individual Si nanowires with axially encoded dopant profiles. This analysis combines experimental measurements and computational simulations to determine the electrical conductivity of the nominally undoped segment of two‐segment Si nanowires, as well as the ratio of the segment lengths. The efficacy of this approach is demonstrated by comparing results generated by EOS with conventional four‐point‐probe measurements. This work provides new insights into the control and variability of semiconductor nanowires for electronic applications and is a critical first step toward the high‐throughput interrogation of complete nanowire‐based devices.  相似文献   
82.
Fourier transform infrared (FT‐IR) spectroscopy in combination with chemometric techniques has become a useful tool for authenticity determination of extra‐virgin olive oils. Spectroscopic analysis of monovarietal extra‐virgin olive oils obtained from three different olive cultivars (Erkence, Ayvalik and Nizip) and mixtures (Erkence‐Nizip and Ayvalik‐Nizip) of monovarietal olive oils was performed with an FT‐IR spectrometer equipped with a ZnSe attenuated total reflection sample accessory and a deuterated tri‐glycine sulfate detector. Using spectral data, principal component analysis successfully classified each cultivar and differentiated the mixtures from pure monovarietal oils. Quantification of two different monovarietal oil mixtures (2–20%) is achieved using partial least square (PLS) regression models. Correlation coefficients (R2) of the proposed PLS regression models are 0.94 and 0.96 for the Erkence‐Nizip and Ayvalik‐Nizip mixtures, respectively. Cross‐validation was applied to check the goodness of fit for the PLS regression models, and R2 of the cross‐validation was determined as 0.84 and 0.91, respectively, for the two mixtures.  相似文献   
83.
Silos are special structures subjected to many different unconventional loading conditions, which result in unusual failure modes. Failure of a silo can be devastating as it can result in loss of the container, contamination of the material it contains, loss of material, cleanup, replacement costs, environmental damage, and possible injury or loss of life. Silo damage and failures that occurred in different regions of the world are presented in the paper using illustrative photos. Also provided are a review and discussion of the common or spectacular silo failures due to explosion and bursting, asymmetrical loads created during filling or discharging, large and nonuniform soil pressure, corrosion of metal silos, deterioration of concrete silos due to silage acids, internal structural collapse, and thermal ratcheting. Silo damage and failures from several earthquakes are also presented.  相似文献   
84.
85.
A color space is a three-dimensional representation of all the possible color percepts. The CIE 1976 L*a*b* is one of the most widely used object color spaces. In CIELAB, lightness L* is limited between 0 and 100, while a* and b* coordinates have no fixed boundaries. The outer boundaries of CIELAB have been previously calculated using theoretical object spectral reflectance functions and the CIE 1931 and 1964 observers under the CIE standard illuminants D50 and D65. However, natural and manufactured objects reflect light smoothly as opposed to theoretical spectral reflectance functions. Here, data generated from a linear optimization method are analyzed to re-evaluate the outer boundaries of the CIELAB. The color appearance of 99 test color samples under theoretical test spectra has been calculated in the CIELAB using CIE 1931 standard observer. The lightness L* boundary ranged between 6 and 97, redness-greenness a* boundary ranged between −199 and 270, and yellowness-blueness b* boundary ranged between −74 and 161. The boundary in the direction of positive b* (yellowness) was close to the previous findings. While the positive a* (redness) boundary exceeded previously known limits, the negative a* (greenness) and b* (blueness) boundaries were lower than the previously calculated CIELAB boundaries. The boundaries found here are dependent on the color samples used here and the spectral shape of the test light sources. Irregular spectral shapes and more saturated color samples can result in extended boundaries at the expense of computational time and power.  相似文献   
86.
87.
In this study, morphological and rheological properties of cycloolefin copolymer (COC)/graphite composites prepared in a twin screw extruder by using various amounts of graphite (G) and expanded graphite (EG) were investigated in detail. Rheological behaviors of the samples were measured in a dynamic oscillatory rheometer in the melt state. Rheology data were analyzed in different ways in order to quantify the microstructural features which indicate the solid‐state physical properties of the composite materials. In the linear viscoelastic region, increasing of storage modulus (G′) with the filler amount and the van Gurp‐Palmen plots were used to determine the percolation threshold which is the critical filler amount for the physical network formation by the G sheets. Percolation threshold values were found to be about 21.5 phr and 3.8 phr for the G‐ and EG‐loaded samples, respectively. Microstructures of the samples which include quite higher amount of filler than the percolation were observed in a scanning electron microscopy. It was found that the sheets of pristine G maintained their original stack form while the EG was successfully dispersed in the COC phase and formed three dimensional house‐of‐card structures without a compatibilizer. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   
88.
In this study, effects of commercial additives such as antioxidant and stabilizer on the non-isothermal crystallization kinetics of isotactic polypropylene without nucleating agents were investigated by differential scanning calorimetry (DSC) method. Kinetic parameters by Osawa, Avrami and Liu-Mo models and apparent activation energy of the crystallization by Kissinger model were calculated. A polarized optical microscope was also used to observe crystalline morphology of the polypropylene samples crystallized at different cooling rates. On the contrary rate inducing effects of the nucleating agents on the crystallization kinetics of the polypropylene, interestingly, it was found that such types of commercial additives reduced the overall crystallization rate of the polypropylene. Based on the crystallization kinetics and morphology of the samples, it was observed that commercial additives inhibit the chain diffusion toward the growing crystal faces thus slow the crystal growth rate. Furthermore, calculated nucleation activity (ϕ) for the additives showed that they do not act as effective nucleating agents. It was found that the crystallization activation energy of additive-free sample was higher than that of the sample which has commercial additives. Activation energies were found to be 233.6 and 276.7 kJ mol−1 for the PP-1 and PP-2, respectively. Kinetic results also show importance of using of nucleating agents to increase the crystallization rate of polypropylene by increasing the nucleation and thus overall crystallization rate during polypropylene processing operations (esp. for a fast processing cycle in injection molding).  相似文献   
89.
This study focuses on the detection and quantification of extra-virgin olive oil adulteration with different edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated with wavelet compression previous to principal component analysis (PCA). Detection limit of adulteration was determined as 5% for corn–sunflower binary mixture, cottonseed and rapeseed oils. For quantification of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC) and wavelet compression before partial least square (PLS) analysis. The results revealed that models predict the adulterants, corn–sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%.  相似文献   
90.
Polyesters, which are readily synthesized in the absence of solvent, are excellent candidates for a new generation of pressure sensitive adhesives (PSAs) due to their low cost and potential biodegradability. In this study, linear, all-aliphatic polyesters with low glass transition temperatures (Tg) were synthesized using a solvent-free, environmentally friendly melt polycondensation methodology. Polyesters of various compositions were synthesized from different diol and diester monomers to adjust the glass transition temperature and achieve optimum adhesive properties. Melt polycondensation of an isomeric mixture of dimethyl-1,4-cyclohexane dicarboxylate (DMCD), dimethyl adipate (DMAP), diethylene glycol (DEG), and triethylene glycol (TEG) generated a series of linear low-Tg polyesters. The synthesized polyesters were characterized using size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and 1H NMR spectroscopy. The frequency- and temperature-dependent properties of the low-Tg polyesters were characterized using dynamic mechanical analysis (DMA). The adhesive performance of the polymers was evaluated using tack, peel, and shear strength measurements at ambient humidity and temperature. The low-Tg polyesters exhibited peel and tack properties comparable with commercial acrylic adhesives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号