首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   16篇
电工技术   3篇
化学工业   44篇
金属工艺   15篇
机械仪表   8篇
建筑科学   27篇
能源动力   36篇
轻工业   17篇
石油天然气   3篇
无线电   27篇
一般工业技术   89篇
冶金工业   21篇
原子能技术   3篇
自动化技术   33篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   27篇
  2011年   22篇
  2010年   22篇
  2009年   29篇
  2008年   33篇
  2007年   21篇
  2006年   14篇
  2005年   14篇
  2004年   12篇
  2003年   5篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
41.
di/dt Noise in CMOS Integrated Circuits   总被引:4,自引:0,他引:4  
This is an overview paper presenting di/dtnoise from a designers perspective. Analysis and circuit designtechniques are presented taking package parasitics into account.The main focus is on digital CMOS design, but analysis and designsuggestions can easily be extended to mixed-mode design.  相似文献   
42.
Constructing hollow nanostructures is attractive for both fundamental research and practical applications. However, how to prepare hollow nanostructures in a simple, scalable, and cost‐effective way still remains a great challenge. In this study, for the first time, the anodization technique is applied to construct hollow nanostructures. Specifically, hollow nanospheres of SnS/SnOx with a hierarchical porous structure are self‐assembled directly on the Sn substrate, via a convenient one‐step anodization method. When applied for sodium‐ion batteries, the thus fabricated SnS/SnOx hollow nanospheres on the substrate readily serve as a binder‐free electrode, delivering remarkably high cycling stability and rate capability.  相似文献   
43.
In this work, a fast approach for the fabrication of hundreds of ultraclean field‐effect transistors (FETs) is introduced, using single‐walled carbon nanotubes (SWCNTs). The synthesis of the nanomaterial is performed by floating‐catalyst chemical vapor deposition, which is employed to fabricate high‐performance thin‐film transistors. Combined with palladium metal bottom contacts, the transport properties of individual SWCNTs are directly unveiled. The resulting SWCNT‐based FETs exhibit a mean field‐effect mobility, which is 3.3 times higher than that of high‐quality solution‐processed CNTs. This demonstrates that the hereby used SWCNTs are superior to comparable materials in terms of their transport properties. In particular, the on–off current ratios reach over 30 million. Thus, this method enables a fast, detailed, and reliable characterization of intrinsic properties of nanomaterials. The obtained ultraclean SWCNT‐based FETs shed light on further study of contamination‐free SWCNTs on various metal contacts and substrates.  相似文献   
44.
45.
In the present study, a model for simulations of removal torque experiments was developed using finite element method. The interfacial retention and fracturing of the surrounding material caused by the surface features during torque was analyzed. It was hypothesized that the progression of removal torque and the phases identified in the torque response plot represents sequential fractures at the interface. The 3-dimensional finite element model fairly accurately predicts the torque required to break the fixation of acid-etched implants, and also provides insight to how sequential fractures progress downwards along the implant side.  相似文献   
46.
We report direct optical observation of cavitation bubbles in liquid helium, both in classical viscous He I and in superfluid He II, close to the \(\lambda \)-transition. Heterogenous cavitation due to the fast-flowing liquid over the rough surface of prongs of a quartz tuning fork oscillating at its fundamental resonant frequency of \(4\,\mathrm {kHz}\) occurs in the form of a cluster of small bubbles rapidly changing its size and position. In accord with previous investigators, we find the cavitation threshold lower in He I than in He II. In He I, the detached bubbles last longer than one camera frame (10 ms), while in He II the cavitation bubbles do not tear off from the surface of the fork up to the highest attainable drive.  相似文献   
47.
Flight controllers for micro-air UAVs are generally designed using proportional-integral-derivative (PID) methods, where the tuning of gains is difficult and time-consuming, and performance is not guaranteed. In this paper, we develop a rigorous method based on the sliding mode analysis and nonlinear backstepping to design a PID controller with guaranteed performance. This technique provides the structure and gains for the PID controller, such that a robust and fast response of the UAV (unmanned aerial vehicle) for trajectory tracking is achieved. First, the second-order sliding variable errors are used in a rigorous nonlinear backstepping design to obtain guaranteed performance for the nonlinear UAV dynamics. Then, using a small angle approximation and rigorous geometric manipulations, this nonlinear design is converted into a PID controller whose structure is naturally determined through the backstepping procedure. PID gains that guarantee robust UAV performance are finally computed from the sliding mode gains and from stabilizing gains for tracking error dynamics. We prove that the desired Euler angles of the inner attitude controller loop are related to the dynamics of the outer backstepping tracker loop by inverse kinematics, which provides a seamless connection with existing built-in UAV attitude controllers. We implement the proposed method on actual UAV, and experimental flight tests prove the validity of these algorithms. It is seen that our PID design procedure yields tighter UAV performance than an existing popular PID control technique.  相似文献   
48.
A conductive phosphonate metal–organic framework (MOF), [{Cu(H2O)}(2,6-NDPA)0.5] (NDPA = naphthalenediphosphonic acid), which contains a 2D inorganic building unit (IBU) comprised of a continuous edge-sharing sheet of copper phosphonate polyhedra is reported. The 2D IBUs are connected to each other via polyaromatic 2,6-NDPA's, forming a 3D pillared-layered MOF structure. This MOF, known as TUB40, has a narrow band gap of 1.42 eV, a record high average electrical conductance of 2 × 102 S m−1 at room temperature based on single-crystal conductivity measurements, and an electrical conductance of 142 S m−1 based on a pellet measurement. Density functional theory (DFT) calculations reveal that the conductivity is due to an excitation from the highest occupied molecular orbital on the naphthalene-building unit to the lowest unoccupied molecular orbital on the copper atoms. Temperature-dependent magnetization measurements show that the copper atoms are antiferromagnetically coupled at very low temperatures, which is also confirmed by the DFT calculations. Due to its high conductance and thermal/chemical stability, TUB40 may prove useful as an electrode material in supercapacitors.  相似文献   
49.
The development of selected ion flow tube mass spectrometry, SIFT‐MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT‐MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on‐line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT‐MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H3O+, NO+ and ${\rm O}_{{\rm 2}}^{{\rm + } \cdot }$ , and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on‐line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally‐generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT‐MS with GC and ATD, and their significance. Finally, prospects for future SIFT‐MS developments are alluded to. © 2010 Wiley Periodicals, Inc., Mass Spec Rev 30:236–267, 2011  相似文献   
50.
By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET’s electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号