首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   7篇
  国内免费   1篇
电工技术   13篇
化学工业   59篇
金属工艺   3篇
机械仪表   4篇
建筑科学   1篇
能源动力   6篇
轻工业   21篇
水利工程   1篇
无线电   13篇
一般工业技术   34篇
冶金工业   92篇
原子能技术   3篇
自动化技术   18篇
  2023年   4篇
  2022年   2篇
  2021年   12篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   8篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   1篇
  2009年   6篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   12篇
  1998年   29篇
  1997年   17篇
  1996年   13篇
  1995年   5篇
  1994年   12篇
  1993年   8篇
  1992年   3篇
  1991年   3篇
  1986年   1篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   3篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
71.
We evaluated the solute atmosphere around a moving dislocation and the dragging stress due to the atmosphere in binary and ternary Al-based alloys in terms of a chemical potential gradient by modifying the method proposed by Yoshinaga et al. In ternary alloys, we analyzed formation of the complex solute atmosphere around a straight edge dislocation and the dragging stress in terms of a misfit parameter of a solute element (positive or negative) and an interaction parameter between solute elements (attractive or repulsive).  相似文献   
72.
Event detection can be defined as the problem of detecting when a target event has occurred, from a given data sequence. Such an event detection problem can be found in many fields in science and engineering, such as signal processing, pattern recognition, and image processing. In recent years, many data sequences used in these fields, especially in video data analysis, tend to be high dimensional. In this paper, we propose a novel event detection method for high-dimensional data sequences in soccer video analysis. The proposed method assumes a Bayesian hidden Markov model with hyperparameter learning in addition to the parameter leaning. This is in an attempt to reduce undesired influences from ineffective components within the high-dimensional data. Implemention is performed by Markov Chain Monte Carlo. The proposed method was tested against an event detection problem with sequences of 40-dimensional feature values extracted from real professional soccer games. The algorithm appears functional.  相似文献   
73.
74.
We report a novel and inexpensive fabrication process of multiferroic nanocomposite via liquid phase using an anodic alumina template. The sol-gel spin-coating technique was used to coat the template with ferrimagnetic CoFe2O4. By dissolving the template with NaOH aqueous solution, a unique nanotube array structure of CoFe2O4 was obtained. The CoFe2O4 nanotube arrays were filled with, and sandwiched in, ferroelectric BaTiO3 layers by a sol-gel spin-coating method to obtain the composite. Its multiferroicity was confirmed by measuring the magnetic and dielectric hysteresis loops.  相似文献   
75.
76.
We examined a method to produce bread from crystalline rice flour without using thickening agents such as gluten, polysaccharide thickening, and amorphous rice flour. Rice grains were pulverized by a jet mill to produce flour. Samples of rice flours of various particle size distributions were prepared by using a size shifter. The degree of starch damage and the dynamic viscoelasticity of rice batter were measured in this work. We also baked bread of the flour of each size distribution to study processability for making bread. The batter made by the pulverized flour of rice particle size ranging from 75 to 106 μm had the highest expansion ratio and a good processability for baking breads compared to other particle size batters. The rice bread with high expansion ratio was produced by controlling particle size of crystalline rice flour without using thickening agents.  相似文献   
77.
In the last decade, dielectric barrier discharge (DBD) plasma actuators using a combination voltage of AC and a nanosecond pulse have been studied. The combined‐voltage‐driven plasma actuator increases the body force effect, including wall jet and flow suction, by overlapping the nanosecond pulse voltage, while the DBD plasma actuator driven by nanosecond pulses is a flow control actuator generating compression waves due to pulse heating, which makes it possible to supply an active flow control at a high‐speed flow, reported as up to Mach 0.7. In this study, a DBD plasma actuator driven by a combination voltage of sinusoidal AC and nanosecond pulse was experimentally investigated. The time‐averaged net thrust and cycle‐averaged power consumption of the actuator were characterized by using an electrical weight balance and the charge‐voltage cycle of a DBD plasma actuator, respectively. The plasma actuator thrust driven with the combination voltage showed increased thrust with increasing pulse repetition rate. The energy consumption of the actuator was controlled by varying the AC phase when the nanosecond pulse was applied. Therefore, the thrust and power consumption in the actuator were almost independently controlled by the pulse repetition rate and the pulse imposed phase.  相似文献   
78.
In the research of advanced materials based on nanoscience and nanotechnology, it is often desirable to measure nanoscale local electrical conductivity at a designated position of a given sample. For this purpose, multiple‐probe scanning probe microscopes (MP‐SPMs), in which two, three or four scanning tunneling microscope (STM) or atomic force microscope (AFM) probes are operated independently, have been developed. Each probe in an MP‐SPM is used not only for observing high‐resolution STM or AFM images but also for forming an electrical contact enabling nanoscale local electrical conductivity measurement. The world's first double‐probe STM (DP‐STM) developed by the authors, which was subsequently modified to a triple‐probe STM (TP‐STM), has been used to measure the conductivities of one‐dimensional metal nanowires and carbon nanotubes and also two‐dimensional molecular films. A quadruple‐probe STM (QP‐STM) has also been developed and used to measure the conductivity of two‐dimensional molecular films without the ambiguity of contact resistance between the probe and sample. Moreover, a quadruple‐probe AFM (QP‐AFM) with four conductive tuning‐fork‐type self‐detection force sensing probes has been developed to measure the conductivity of a nanostructure on an insulating substrate. A general‐purpose computer software to control four probes at the same time has also been developed and used in the operation of the QP‐AFM. These developments and applications of MP‐SPMs are reviewed in this paper.  相似文献   
79.
Recently the metastable 1T′‐type VIB‐group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed “2M” WS2, is constructed from 1T′ WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine‐tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov–de Haas oscillations and first‐principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2, are predicted through first‐principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB‐group transition metal dichalcogenides.  相似文献   
80.
An engineered anti-carcinoembryonic antigen (CEA) diabody (scFv dimer, 55 kDa) was previously constructed from the murine anti-CEA T84.66 antibody. Tumor targeting, imaging and biodistribution studies in nude mice bearing LS174T xenografts with radiolabeled anti-CEA diabody demonstrated rapid tumor uptake and fast blood clearance, which are favorable properties for an imaging agent. Current radiolabeling approaches result in random modification of the protein surface, which may impair immunoreactivity especially for smaller antibody fragments. Site-specific conjugation approaches can direct modifications to reactive groups located away from the binding site. Here, cysteine residues were introduced into the anti-CEA diabody at three different locations, to provide specific thiol groups for chemical modification. One version (with a C-terminal Gly-Gly-Cys) existed exclusively as a disulfide-bonded dimer. This cysteine-modified diabody (Cys-diabody) retained high binding to CEA and demonstrated tumor targeting and biodistribution properties identical to the non-covalent diabody. Furthermore, following reduction of the disulfide bond, the Cys-diabody could be chemically modified using a thiol-specific bifunctional chelating agent, for radiometal labeling. Thus, the Cys-diabody provides a covalently linked alternative to conventional diabodies, which can be reduced and modified site-specifically. This format will provide a versatile platform for targeting a variety of agents to CEA-positive tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号