首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1053篇
  免费   47篇
  国内免费   10篇
电工技术   22篇
综合类   5篇
化学工业   240篇
金属工艺   38篇
机械仪表   54篇
建筑科学   29篇
矿业工程   3篇
能源动力   80篇
轻工业   111篇
水利工程   4篇
石油天然气   8篇
无线电   102篇
一般工业技术   195篇
冶金工业   50篇
原子能技术   6篇
自动化技术   163篇
  2024年   4篇
  2023年   16篇
  2022年   39篇
  2021年   61篇
  2020年   42篇
  2019年   69篇
  2018年   54篇
  2017年   44篇
  2016年   64篇
  2015年   26篇
  2014年   52篇
  2013年   101篇
  2012年   67篇
  2011年   78篇
  2010年   55篇
  2009年   47篇
  2008年   39篇
  2007年   34篇
  2006年   22篇
  2005年   18篇
  2004年   15篇
  2003年   15篇
  2002年   18篇
  2001年   10篇
  2000年   5篇
  1999年   9篇
  1998年   13篇
  1997年   13篇
  1996年   8篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1966年   1篇
排序方式: 共有1110条查询结果,搜索用时 171 毫秒
101.
The interaction of plane frames with an elastic foundation, of the Winkler type, having normal and shear moduli of subgrade reactions was studied.

An exact stiffness matrix for a beam element on an elastic foundation having only a normal modulus of subgrade reaction was modified to include the shear modulus of subgrade reaction of the foundation as well as the axial force in the beam. A computer program was written and used in two case studies. In the first case study the convergence of the modified element was tested: in the second it was employed to study the effect of the foundation normal and shear moduli of subgrade reactions on the bending moments in a selected plane frame. The results indicated that bending moments might be considerably affected according to the type of frame and loading.  相似文献   

102.
A stereoselective reversed-phase liquid chromatographic method for the determination of compounds LY300502 and LY300503 (enantiomers of LY191704) in rat and dog plasma was developed. The assay involved extraction of the compounds using a strong cation-exchange solid-phase extraction column, from which the compounds are eluted with 1% of 1 M HCI in methanol. The enantiomers were separated on a Daicel Chiralcel OD-R column. The mobile phase consisted of water-acetonitrile-methanol (50:40:10, v/v) at a flow-rate of 0.3 ml/min. UV detection was achieved at 220 nm. The disposition of the enantiomers of LY191704 in rats and dogs was found to be stereoselective and species specific.  相似文献   
103.
Chitosan and its derivatives are widely used in drug delivery systems due to their bio-degradebility, bio-compatibility and absorption enhancing properties. Many peptide and protein derived therapeutics cannot be administered through oral rout because of the proteolytic condition of gastro-intestinal tract and their low bio-availability. Insulin is a peptide drug which is widely used in diabetics as repeated daily injection. Due to the fact that there are receptors for didpeptides and vitamine B12 in small intestine, in this research work novel derivatives of chitosan and trimethyl chitosan conjugated with glycyl-glycine, alanyl-alaninie and vitamine B12 were synthesized and characterized. The structure of conjugates as well as substitution of different functional groups was confirmed by different instrumental analytical methods such as Fourier transform infrared, magnetic resonance, and X-ray diffraction spectroscopy. Nano-particles of aforementioned loaded with insulin were prepared and their size, surface electrical charge and morphology characterized and their release profile were studied. The results are promising and reveal that these new chitosan and trimethyl chitosan derivatives are potential vehicles for protein and peptide drug molecules.  相似文献   
104.
A review of the stabilization of tropical lowland peats   总被引:2,自引:0,他引:2  
The Deep Mixing Method, which involves the formation of in situ stabilized peat columns, is suitable for deep peat stabilization, whereas the mass stabilization technique is used to stabilize the soil of shallow peat deposits instead of the costly and problematic removal and replacement method. The concept of soil-cement stabilization involves the addition of water to cement, resulting in a chemical process known as cement hydration. Stabilization of peat by cement, which requires a significant strength increase in the cement-stabilized peat or organic soil, is attributed largely to physicochemical reactions that include cement hydration, hardening of the resulting cement paste and interactions between soil substances and primary and secondary cementation hydration products. The factors that affect these physicochemical reactions and the interactions of peat soil-cementation products that influence peat stabilization are the amount of solid particles, the water: soil ratio, the quantity of binder, the presence of humic and/or fulvic acids, the soil pH and the amount of organic matter in the peat. With the Air Curing Technique, stabilized peat samples for unconfined compressive strength (UCS) tests were kept at a normal air temperature of 30 ± 2 °C and strengthened by gradual moisture content reduction instead of the usual water-curing technique or water submersion methods that have been common practice in past experiments involving the stabilization of peat with cement. The principle of using the Air Curing Technique to strengthen stabilized peat is that peat soil at its natural moisture content contains sufficient water (water content from 198 to 417 %) that, when mixed with cement, a curing process takes place that causes the stabilized peat soil to gradually lose its moisture content and to become drier and harder throughout the curing period. This process does not require the addition of water.  相似文献   
105.
Objective: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan.

Methods: Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined.

Results: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24?h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4-N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan.

Conclusion: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin.  相似文献   
106.
The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81?kg/mm2 tensile strength and 2.47?N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.  相似文献   
107.
Accurate short-term load forecasting (STLF) is one of the essential requirements for power systems. In this paper, two different seasonal artificial neural networks (ANNs) are designed and compared in terms of model complexity, robustness, and forecasting accuracy. Furthermore, the performance of ANN partitioning is evaluated. The first model is a daily forecasting model which is used for forecasting hourly load of the next day. The second model is composed of 24 sub-networks which are used for forecasting hourly load of the next day. In fact, the second model is partitioning of the first model. Time, temperature, and historical loads are taken as inputs for ANN models. The neural network models are based on feed-forward back propagation which are trained and tested using data from electricity market of Iran during 2003 to 2005. Results show a good correlation between actual data and ANN outcomes. Moreover, it is shown that the first designed model consisting of single ANN is more appropriate than the second model consisting of 24 distinct ANNs. Finally ANN results are compared to conventional regression models. It is observed that in most cases ANN models are superior to regression models in terms of mean absolute percentage error (MAPE).  相似文献   
108.
The electro-optic characteristics of the semi-insulating and n(+)-type GaAs(001) surfaces passivated with n-alkanethiol self-assembled monolayers were investigated using Kelvin probe surface photovoltage (SPV) and photoluminescence (PL) techniques. Referencing the equilibrium surface barrier height established in an earlier report, SPV measurements demonstrated a significant (>100 mV) increase in the non-equilibrium band-bending potential observed under low-level photo-injection. Modeling of the SPV accounts for these observations in terms of a large (>10(4)) decrease in the hole/electron ratio of surface carrier capture cross-sections, which is suggested to result from the electrostatic potential of the interfacial dipole layer formed upon thiol chemisorption. The cross-section effects are verified in the high-injection regime based on carrier transport modeling of the PL enhancement manifested as a reduction of the surface recombination velocity.  相似文献   
109.
Chemical and isotope geothermometers, i.e. the Na–K, K–Mg, quartz and δ18O(SO4–H2O), have been applied to estimate the reservoir temperature of the thermal springs in the northern areas of Pakistan. The chemical types of the thermal waters and the effects of mixing of shallow cold water with the thermal end-members are discussed. These waters are neutral to slightly alkaline and have low dissolved contents. Sodium is the dominant cation in almost all the cases. In terms of anions, the hot waters of Budelas are of the SO4 type, those of Tatta Pani are of mixed character (SO4 and HCO3), and the waters from the remaining areas show HCO3 domination. An absence of tritium in Tatta Pani and Tato thermal springs indicates that they do not have any contribution of shallow young water. In the case of the Murtazabad springs, the wide range of tritium concentrations, negative correlations with surface temperature and Cl, and positive correlation between Na and Cl show that the shallow cold groundwater is mixing with thermal water in different proportions. For the mixed water of Murtazabad thermal springs, ‘isochemical modelling’ using the Na–K, K–Mg and quartz geothermometers indicates an equilibrium temperature in the range 185–200 °C. The δ18O(SO4–H2O) geothermometer gives relatively low temperatures for three springs, whereas two samples are close to the 185–200 °C temperature interval. The reservoir temperatures of Tatta Pani springs (100–120 °C), determined by Na–K and quartz geothermometers, are in good agreement. The δ18O(SO4–H2O) geothermometer gives a relatively higher range (140–150 °C) for most of the Tatta Pani springs. For Tato spring, the isotope and chemical geothermometers (except for the K–Mg) agree on an equilibrium temperature of about 170 °C. Reservoir temperatures of the remaining minor fields are not conclusive due to the lack of sufficient data.  相似文献   
110.
Vehicular Delay-Tolerant Networking (VDTN) is a Delay-Tolerant Network (DTN) based architecture concept for transit networks, where vehicles movement and their bundle relaying service is opportunistically exploited to enable non-real time applications, under environments prone to connectivity disruptions, network partitions and potentially long delays. In VDTNs, network resources may be limited, for instance due to physical constraints of the network nodes. In order to be able to prioritize applications traffic according to its requirements in such constrained scenarios, traffic differentiation mechanisms must be introduced at the VDTN architecture. This work considers a priority classes of service (CoS) model and investigates how different buffer management strategies can be combined with drop and scheduling policies, to provide strict priority based services, or to provide custom allocation of network resources. The efficiency and tradeoffs of these proposals is evaluated through extensive simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号