首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   24篇
  国内免费   7篇
电工技术   8篇
综合类   3篇
化学工业   105篇
金属工艺   15篇
机械仪表   10篇
建筑科学   11篇
矿业工程   1篇
能源动力   27篇
轻工业   16篇
水利工程   5篇
石油天然气   1篇
无线电   38篇
一般工业技术   70篇
冶金工业   21篇
原子能技术   2篇
自动化技术   75篇
  2023年   4篇
  2022年   7篇
  2021年   25篇
  2020年   24篇
  2019年   29篇
  2018年   36篇
  2017年   22篇
  2016年   26篇
  2015年   19篇
  2014年   27篇
  2013年   29篇
  2012年   27篇
  2011年   42篇
  2010年   20篇
  2009年   13篇
  2008年   14篇
  2007年   11篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2000年   1篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有408条查询结果,搜索用时 375 毫秒
71.
Our previous results showed that while amblyopes can efficiently integrate visual signals, they are poor at segregating signals in noise. This could be either because integration detectors have broader bandwidths or because of a selective extrastriate segregation anomaly. One consequence of the former would be poorer variance discrimination. Using a two-alternative forced-choice paradigm, observers were asked to judge the orientational variance for arrays of 16 Gabors. All observers, be they normal or amblyopic, could perform the task similarly, although at high spatial frequencies, amblyopic eyes needed slightly more incremental variance than the normal eyes. We conclude that normals and amblyopes integrate signals in a similar way.  相似文献   
72.
It is an important challenge to reduce the carbon content in nanostructured bainitic steels for commercialization purposes while still being able to gain the desired microstructural characteristics in nanoscale and not to deteriorate the strength-ductility combinations. That is the point at which an appropriate heat treatment procedure design would be an important parameter. This article aims to investigate how to obtain nanostructured bainite in steel with 0.26 wt% carbon content by applying multi-step austempering procedures. One-, two- and three-step austempering processes have been implemented, and proper heat treatment temperatures and approaches were selected based on dilatometry tests. Results indicated that it has become possible to achieve bainitic ferrites and austenite films with overall thicknesses of 164, 145 and 132 nm and 134, 105 and 90 nm at the end of one-, two- and three-step austempering heat treatments, respectively. Meanwhile, microstructural characteristics resulted in enhanced mechanical properties with ultimate tensile strength (UTS) of 1435, 1455 and 1428 MPa in combination with elongation levels of 15.4, 13.6 and 11.4% after implementing those heat treatments. Finally, it has been shown that applying the multi-step austempering heat treatments resulted in enhanced yield strength and impact toughness values due to the microstructural characteristics and proper heat treatment procedure design.  相似文献   
73.
喷丸处理是改进金属工件疲劳性能最常规的表面处理方法。文中研究了喷丸处理对合金化奥贝球铁(AD)I疲劳性能的影响。等温淬火包括875℃保温90 min奥氏体化处理,然后在320℃、365℃和400℃进行等温处理。用直径0.4~0.6 mm的丸喷丸后的试样做旋转弯曲疲劳试验。对试样进行XRD和SEM分析,测定显微硬度和粗糙度,研究试样的疲劳性能。结果表明,在320℃、365℃和400℃等温处理的试样喷丸后疲劳强度分别增加了27.3%、33.3%和48.4%。  相似文献   
74.
Coupling the adjacent zones for seepage analysis in porous media needs compatibility and equilibrium equations (equality of potential on coinciding nodes and conservation of flowing mass between zones, respectively). When stretched coordinate transformation is applied to the anisotropic zones, the Dirichlet boundary conditions remain unchanged, but the Neumann boundary condition should also be transformed. Similarly in a zoned problem, for the interface between zones, compatibility equations remain unchanged during the transformation while the equilibrium equations should be transformed. In this paper, transformed Neumann boundary conditions and equilibrium equations for the interface of neighbor anisotropic zones for seepage problems have been developed in three dimensions. A computer program for seepage analysis of zoned anisotropic media based on the Boundary Element Method is developed. The code is used to solve several examples with isotropic and anisotropic zones. Some examples are also solved by finite element method for verification. Illustrated results show the ability and accuracy of the mathematical and the numerical model for solving different types of applied three-dimensional seepage problems that arise in engineering practice.  相似文献   
75.
In this paper, three-dimensional turbulent flow field around a complex bridge pier placed on a rough fixed bed is experimentally investigated. The complex pier foundation consists of a column, a pile cap, and a 2×4 pile group. All of the elements are exposed to the approaching flow. An acoustic-Doppler velocimeter was used to measure instantaneously the three components of the velocities at different horizontal and vertical planes. Profiles and contours of time-averaged velocity components, turbulent intensity components, turbulent kinetic energy, and Reynolds stresses, as well as velocity vectors are presented and discussed at different vertical and horizontal planes. The approaching boundary layer at the upstream of the pile cap separated in two vertical directions and induced an upward flow toward the column and a contracted downward flow below the pile cap and toward the piles. The contracted upward flow on the pile cap interacts with downflow in the front of the column and deflects toward the side of the pier, which in return produces a strong downflow along the side of the pile cap. The flow at the rear of the pile cap is very complex. The strong downward flow at the downstream and near the top of the pile cap in interaction with the reverse flow behind the column and upward flow near the bed produce two vortices close to the upper and lower corners of the pile cap with opposite direction of rotation. On the other hand, the back-flow from the wake of the pile cap is forced into the top region resulting in a secondary recirculation at the wake of the column. The contracted flow below the pile cap and toward the piles, a strong downflow along the sides of the pile cap at the upstream region, and a vortex flow behind the pile cap and an amplification of turbulence intensity along the sides of the pile cap at the downstream region are the main features of the flow responsible for the entrainment of bed sediments.  相似文献   
76.
In this research, the activity and selectivity of a platinum-based catalyst for H2 production through aqueous phase reforming (APR) in a fixed-bed reactor (FBR) as well as, a structured catalyst microreactor (MR) were investigated. In this venue, first, an in-house designed MR was fabricated and the catalytic material was deposited on the channel walls of this steel made reactor. After verification of the stability of the coated layer, the prepared reactor was employed to investigate the APR reaction. In this regard, APR of the ethylene glycol and glycerol over Pt/Al2O3 and Pt/CeO2Al2O3 catalyst were conducted in an MR and FBR. Obtained results demonstrated that employing Pt/CeO2Al2O3 as a highly active catalyst in an FBR, slightly reduced the H2 selectivity for the APR reaction of the ethylene glycol. Moreover, this effect appeared even more pronounced in reforming of glycerol. On the other hand, utilization of an MR for the APR of glycerol improved the H2 selectivity due to the more active Pt/CeO2Al2O3 catalyst, for this process. Comparison of the results revealed that the highly active catalyst alongside a reactor alleviating mass transfer limitations were two complementary factors leading to better performance of such chemical systems. Moreover, this research emphasized that obtained values of the APR conversion and H2 selectivity in an MR coated with the Pt/CeO2Al2O3 catalyst was superior to those obtained from an FBR. Ultimately, the best results obtained for the aforementioned catalytic species indicated that the APR of glycerol in a structured catalyst MR led to 75.3% conversion of glycerol and 92.4% selectivity to hydrogen production both of which were considerably better than results determined in an FBR.  相似文献   
77.
This paper deals with energy, exergy, economic, and environmental (4E) analysis of two new combined systems for simultaneous power and hydrogen production. The combined systems are integrated from a city gate station (CGS) system, a Rankine cycle (RC), an absorption power cycle (APC), and a proton exchange membrane (PEM) electrolyzer. Since the pressure of natural gas (NG) in transmission pipeline is high, this pressure is reduced at CGS to a lower pressure. However, this NG has also ample potential to be recovered for multiple productions, too. In the proposed systems, the outlet energy of NG is used for power and hydrogen production by employing RC/APC and PEM electrolyzer. The power sub-cycles are driven by waste heat of CGS, while PEM electrolyzer is driven by this waste heat along with a portion of CGS-Turbine output power. A comprehensive thermodynamic modeling and parametric study of the proposed combined systems are conducted from the 4E analysis viewpoint. The results of two proposed systems are compared with each other, considering a fixed value of 1 MW for RC- and APC-Turbines power. Under the same external conditions and using steam as working fluid of RC, the thermal efficiency of the combined CGS/PEM-RC and -APC systems are obtained 32.9% and 33.6%, respectively. The overall exergy efficiency of the combined CGS/PEM-RC and -APC systems are also calculated by 47.9% and 48.9%, respectively. Moreover, the total sum unit cost of product (SUCP) and CO2 emission penalty cost rate are obtained 36.9 $/GJ and 0.033 $/yr for the combined CGS/PEM-RC and 36 $/GJ and 0.211 $/yr for the combined CGS/PEM-APC systems, respectively. The results of exergy analysis also revealed that the vapor generator (in both systems) has the main contribution in the overall exergy destruction.  相似文献   
78.
This paper presents a simple and robust direct current control based predictive approach for rotor side converter (RSC) of the doubly fed induction generator (DFIG), which operates at a constant switching frequency and has a fast dynamic response. First, sector of required rotor voltage vector is predicted in this strategy, and according to this predicted sector, two active vectors and two zero vectors are elected in each switching period. Derivatives of rotor current in the synchronous frame are determined for each predicted voltage vector in every period. These derivatives are used to compute the duration of the vectors in such a way that the current error at the end of the switching period gets minimized. The accuracy of the proposed control strategy under variation of rotor speed is evaluated in Matlab/Simulink environment for a 2 MW DFIG. Moreover, the impact of parameter variations on the system is examined for this suggested technique. Furthermore, the dynamic response and stator current total harmonic distortion (THD) of proposed strategy is compared with traditional vector control (VC), direct power control (DPC) and predictive direct power control (PDPC) methods. Finally, the performance of the proposed method is evaluated under disturbance voltage. The results demonstrate that suggested control technique has the lowest stator current THD and operates perfectly near the synchronous speed and under grid voltage dip. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
79.
We reported the direct reduction of H2PtCl6 and RuCl3 solution containing acetylene black powder by Na2S2O4 to make Pt–Ru (20–10 wt%) supported on acetylene black (Pt–Ru/AB) as a nanocatalyst for methanol electrooxidation in acidic media. The electrochemical activity of catalyst was studied by electrochemical impedance spectroscopy, linear sweep voltammetry, cyclic voltammetry and chronoamperometry. Structural aspects of the Pt–Ru (20–10 wt%)/AB were studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The analysis of electrochemical results indicated lower charge transfer resistance, higher peak current for Pt–Ru (20–10 wt%)/AB compared to the commercial catalyst, Pt–Ru (20–10 wt%)/carbon Vulcan. XRD spectra verified a face centered cubic structure for the synthesized Pt–Ru/AB and its particle size was mostly 10 nm according to TEM and XRD images. In DMFC, Pt–Ru/AB had superior performance compared to the commercial catalyst in all current densities, which could be attributed to enhancement of the methanol oxidation kinetics, higher conductivity, and more uniform distribution of the ionomer in anode catalyst layer.  相似文献   
80.
This study evaluates the production of magnesium metal from the Zefreh dolomite ore of Central Iran using the Pidgeon process. The investigation consisted of mineralogical and chemical characterization of the dolomite ore, calcining, chemical characterization, LOI (loss on ignition) determination, reduction tests on the calcined dolomite (dolime), using Iranian (Semnan) ferrosilicon and mineralogical, and chemical characterization of the reactants and products. Calcining of dolomite samples was carried out at approximately 1400°C in order to remove CO2, moisture, and other easily volatilized impurities. The dolime was then milled, along with ferrosilicon, thoroughly mixed, and briquetted. The briquettes were heated at 1125°C--1150°C and 500 Pa in a tube reactor for 10--12 hours to extract the magnesium. The ferrosilicon to dolime ratio was determined based on the chemical analyses of the two reactants, using as a guide, and Mintek's Pyrosim software package. Magnesium extraction varied with ferrosilicon addition and with the dolime used, and reach about 80% under optimal conditions. The levels of major impurities encountered in the magnesium crown were similar to those in the crude metal production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号