首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3807篇
  免费   105篇
  国内免费   2篇
电工技术   39篇
综合类   20篇
化学工业   939篇
金属工艺   59篇
机械仪表   64篇
建筑科学   192篇
矿业工程   11篇
能源动力   70篇
轻工业   277篇
水利工程   19篇
石油天然气   6篇
无线电   231篇
一般工业技术   594篇
冶金工业   831篇
原子能技术   32篇
自动化技术   530篇
  2021年   28篇
  2020年   19篇
  2019年   38篇
  2018年   41篇
  2017年   42篇
  2016年   55篇
  2015年   66篇
  2014年   83篇
  2013年   152篇
  2012年   138篇
  2011年   164篇
  2010年   146篇
  2009年   147篇
  2008年   160篇
  2007年   149篇
  2006年   129篇
  2005年   121篇
  2004年   112篇
  2003年   81篇
  2002年   79篇
  2001年   91篇
  2000年   81篇
  1999年   100篇
  1998年   207篇
  1997年   128篇
  1996年   106篇
  1995年   89篇
  1994年   78篇
  1993年   66篇
  1992年   64篇
  1991年   58篇
  1990年   66篇
  1989年   72篇
  1988年   55篇
  1987年   56篇
  1986年   35篇
  1985年   37篇
  1984年   31篇
  1983年   39篇
  1982年   32篇
  1981年   29篇
  1980年   39篇
  1979年   27篇
  1978年   37篇
  1977年   32篇
  1976年   58篇
  1975年   37篇
  1974年   37篇
  1973年   37篇
  1972年   18篇
排序方式: 共有3914条查询结果,搜索用时 31 毫秒
991.
Defined mechanical properties are an essential requirement for any pharmaceutical dosage form and this is particularly important in the case of liquid-filled capsules. Changes in the mechanical properties may be induced by exposure of the capsules to humidity or by a shift of the water equilibrium that typically occurs when hydrophilic or amphiphilic fill masses are used, for example, in self-emulsifying drug delivery systems. This study aims to characterize the softening of empty hard gelatin and hydroxypropyl methylcellulose (HPMC) capsules by means of mechanical tests, a Bareiss hardness test, and a stiffness test using a texture analysis method. A benchtop time domain NMR method is applied in addition to characterize the physico-chemical state of water in the capsule shells and to correlate this with the results of the mechanical tests. Hardness and stiffness measurements resulted in corresponding values, showing a softening for both capsule materials in a humid environment, which was most pronounced beyond 60% relative humidity. The capsules made of gelatin exhibited in general higher stiffness and hardness values compared to the HPMC capsules. The physico-chemical state of water in the capsule shells, as probed by a time domain NMR method, was interpreted in terms of a population balance model. Three different water populations were identified that differ in their molecular mobility, as indicated by their characteristic spin-lattice relaxation times, T1. The most loosely bound water fraction dominated in the capsule shells in the range beyond 60% relative humidity. Numerical correlation of the data led to a heuristic equation between the NMR-derived fraction of loosely bound water in the capsule shells and their mechanical stiffness and hardness. Adequate models were obtained for both capsule types, gelatin, and HPMC. Mechanical measurements of pharmaceutical capsules are generally destructive and time consuming. Testing is usually performed in an analytical laboratory, off-line from the manufacturing process, and involves only a small number of samples. Based on the here presented correlation between mechanical stiffness measurements and benchtop time domain NMR data, the latter method may be used as a nondestructive alternative for mechanical testing. This study also opens the possibility to investigate liquid-filled capsules and to establish a process analytical technology (PAT) during manufacturing.  相似文献   
992.
Clarifying the nature of interactions between metal electrodes and organic molecules still represent one of the challenging problems in molecular electronics that needs to be solved in order to optimize electron transport through a molecular device. For this purpose, electronic properties at metal-molecule interfaces were studied by combining experimental and theoretical methods. Applying a novel electrochemical approach, strictly two-dimensional Pd islands were prepared on top of 4-mercaptopyridine self-assembled monolayers (4MP-SAMs) which, in turn, were deposited on (111)-oriented Au single crystals. Electron spectroscopy together with density functional theory calculations revealed strong interactions between the molecules and the islands due to Pd-N bonds, resulting in a drastically reduced density of states (DOS) at the Fermi level EF for a nearly closed Pd monolayer, and even non-metallic properties for nanometre-sized islands. Similarly, a significantly reduced DOS at EF was observed for the topmost Au layer at the Au-SAM interface due to Au-S interactions, suggesting that these effects are rather general.  相似文献   
993.
We report for the first time the chemical synthesis of free-standing single-crystal nanowires (NWs) of FeSi, the only transition-metal Kondo insulator and the host structure for ferromagnetic semiconductor Fe(x)Co(1-x)Si. Straight and smooth FeSi nanowires are produced on silicon substrates covered with a thin layer of silicon oxide through the decomposition of the single-source organometallic precursor trans-Fe(SiCl3)2(CO)4 in a simple chemical vapor deposition process. Unlike typical vapor-liquid-solid (VLS) NW growth, FeSi NWs form without the addition of metal catalysts, have no catalyst tips, and depend strongly on the surface employed. X-ray spectroscopy verifies the identity and the room-temperature metallic nature of FeSi NWs. Room-temperature electrical transport measurements using NW devices show an average resistivity of 210 micro Omega cm, similar to the value for bulk FeSi. Investigations into the low-temperature physical properties of the first one-dimensional Kondo insulator and the possible new NW growth mechanism are underway. This unique synthetic approach to FeSi NWs will be generally applicable to many other transition-metal silicides.  相似文献   
994.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   
995.
Chitosan was melt‐processed with an ethylene methyl acrylate copolymer ionomer and with an ethylene vinyl acetate copolymer to create antimicrobial extruded films. The key to obtaining a successful antimicrobial blend was the use of solid chitosonium acetate that remained after evaporation of water from the chitosan solution. When solid free‐flowing powders of chitosonium acetate were formed by spray drying chitosan solutions, blended in an extruder (at 2.5% and 4% chitosan) with Elvax® 3175 ethylene vinyl acetate copolymer, and extruded through a film die onto a chill roll to form films, the films exhibited antimicrobial activity against Escherichia coli 25922, Salmonella enterica serovar Enteritidis NalR, and Listeria monocytogenes Scott A. The log10 reductions in CFU/ml after 24 h in a shake‐flask test were near 2 for films containing 4% chitosan. This melt‐blending/extrusion approach is expected to open applications for chitosan‐based antimicrobial packages and articles that were impossible or impractical with chitosan coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
Laser‐acoustics for Testing Coatings and Material Surfaces A laser‐acoustic test method is presented, which can be used for the non‐destructive characterization of coatings and material surfaces. The method measures the dispersion of surface acoustic waves induced by short laser pulses. The technique is based on the fact that the propagation velocity of the wave depends on the frequency in coated and surface modified materials. Measuring the dispersion of the surface acoustic wave enables to determine important properties of the material surface. Three examples demonstrate that the laser‐acoustic method can solve very different problems of surface engineering. The wear resistance of diamond‐like carbon film with a thickness of few nano‐meters was evaluated. The elastic modulus of thermally sprayed coatings which are typically some hundred micro‐meters thick was measured, which allows to conclude on the defect structure of the coatings. The depth of sub‐surface damage layers in semi‐conductor materials was determined, which are created when the wafer is sliced from the ingot.  相似文献   
997.
We study the influence of lithographically defined, electrostatic trap configurations on the photon emission from dipolar excitons in coupled quantum wells. The emission is surprisingly enhanced for an excitonic antitrap compared to a trap configuration, an effect more pronounced for a trap with smaller diameter. We explain the observations by the interplay between the exciton formation process, the lateral charge-carrier dynamics, and the dipole-dipole interactions between the excitons. Exploiting this interplay allows us to efficiently tune the excitonic emission energy with very small intensity variation.  相似文献   
998.
Three series of composite films based on polyimide and MWNTs were prepared by conversion of pyromellitic dianhydride and 4,4′‐oxydianiline in the presence of the nanotubes, followed by thermal imidization. Carboxy‐ and amino‐functionalized as well as unmodified nanotubes were used. It was demonstrated that just 0.5 wt.‐% of nanotubes increased the tensile properties of the composite films distinctly. Surprisingly, a significant influence of the functional groups on the mechanical performance of the composite films could not be demonstrated. However, it was shown that functional groups may reduce the conductivity of the films. Furthermore, the influence of ultrasonication is discussed.

  相似文献   

999.
Cyanobacterial cyclopeptides : A series of analogues of the cyanobacterial cyclopeptide brunsvicamide A was prepared by effective solid‐support‐based total synthesis. Variations in stereochemistry revealed the importance of the D ‐lysine and the L ‐isoleucine residues for the substrate‐competitive inhibitory activity of brunsvicamide A against carboxypeptidase A.

  相似文献   

1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号