首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   22篇
  国内免费   1篇
电工技术   7篇
综合类   1篇
化学工业   245篇
金属工艺   26篇
机械仪表   72篇
建筑科学   9篇
矿业工程   3篇
能源动力   34篇
轻工业   48篇
水利工程   4篇
石油天然气   2篇
无线电   30篇
一般工业技术   102篇
冶金工业   38篇
原子能技术   7篇
自动化技术   95篇
  2023年   8篇
  2022年   64篇
  2021年   65篇
  2020年   28篇
  2019年   31篇
  2018年   35篇
  2017年   28篇
  2016年   31篇
  2015年   26篇
  2014年   24篇
  2013年   37篇
  2012年   38篇
  2011年   29篇
  2010年   37篇
  2009年   27篇
  2008年   22篇
  2007年   21篇
  2006年   30篇
  2005年   18篇
  2004年   16篇
  2003年   12篇
  2002年   13篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   12篇
  1997年   6篇
  1996年   11篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有723条查询结果,搜索用时 0 毫秒
21.
Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50–150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100–150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.  相似文献   
22.
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.  相似文献   
23.
In many pharmaceuticals, a hydrogen atom or hydroxyl group is replaced by a fluorine to increase bioavailability and biostability. The fate of fluorine released from fluorine-containing drugs is not well investigated. The aim of this study was to examine possible fluorination of proteins in rat liver and brain after administration of the fluorinated drug cinacalcet. We assigned 18 Wistar rats to a control group (n = 6) and a group treated with cinacalcet (2 mg kg−1/body weight, 5 days/week), divided into 7 day (n = 6) and 21 day (n = 6) treatment subgroups. Fluorinated proteins were identified using a free proteomics approach; chromatographic separation and analysis by high-resolution mass spectrometry; peptide/protein identification using the Mascot search algorithm; manual verification of an experimentally generated MS/MS spectrum with the theoretical MS/MS spectrum of identified fluorinated peptides. Three fluorinated proteins (spectrin beta chain; carbamoyl-phosphate synthase [ammonia], mitochondrial; 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 1) were identified in the liver and four (spectrin beta chain, dihydropyrimidinase-related protein 4, prominin-2, dihydropyrimidinase-related protein 4) in the brain tissue after 21 days of cinacalcet treatment, but not in the control group. Introduction of fluorine into an organism by administration of fluorinated drugs results in tissue-specific fluorination of proteins.  相似文献   
24.
The development of a high shear rate, high pressure microviscometer is described. This viscometer was developed specifically to examine a highly loaded, dynamic contact generated in a small volume of fluid. The viscometer was used to examine the fluid film formed by the mechanism of elastohydrodynamic lubrication in the presence of an SAE 50 oil. A complete numerical analysis of the resulting elastohydrodynamic contact was performed.  相似文献   
25.
26.
Cardiovascular diseases (CVDs) are the leading cause of human mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of CVD. That is why bioactive food ingredients, including lycopene, are so important in their prevention, which seems to be a compound increasingly promoted in the diet of people with cardiovascular problems. Lycopene present in tomatoes and tomato products is responsible not only for their red color but also for health-promoting properties. It is characterized by a high antioxidant potential, the highest among carotenoid pigments. Mainly for this reason, epidemiological studies show a number of favorable properties between the consumption of lycopene in the diet and a reduced risk of cardiovascular disease. While there is also some controversy in research into its protective effects on the cardiovascular system, growing evidence supports its beneficial role for the heart, endothelium, blood vessels, and health. The mechanisms of action of lycopene are now being discovered and may explain some of the contradictions observed in the literature. This review aims to present the current knowledge in recent years on the preventive role of lycopene cardiovascular disorders.  相似文献   
27.
Hexokinase 2 (HK2), an enzyme of the sugar kinase family, plays a dual role in glucose metabolism and mediating cancer cell apoptosis, making it an attractive target for cancer therapy. While positive HK2 expression usually promotes cancer cells survival, silencing or inhibiting this enzyme has been found to improve the effectiveness of anti-cancer drugs and even result in cancer cell death. Previously, benitrobenrazide (BNBZ) was characterized as a potent HK2 inhibitor with good anti-cancer activity in mice, but the effect of its trihydroxy moiety (pyrogallol-like) on inhibitory activity and some cellular functions has not been fully understood. Therefore, the main goal of this study was to obtain the parent BNBZ (2a) and its three dihydroxy derivatives 2b–2d and to conduct additional physicochemical and biological investigations. The research hypothesis assumed that the HK2 inhibitory activity of the tested compounds depends on the number and location of hydroxyl groups in their chemical structure. Among many studies, the binding affinity to HK2 was determined and two human liver cancer cell lines, HepG2 and HUH7, were used and exposed to chemicals at various times: 24 h, 48 h and 72 h. The study showed that the modifications to the structures of the new BNBZ derivatives led to significant changes in their activities. It was also found that these compounds tend to aggregate and exhibit toxic effects. They were found to contribute to: (a) DNA damage, (b) increased ROS production, and (c) disruption of cell cycle progression. It was observed that, HepG2, occurred much more sensitive to the tested chemicals than the HUH7 cells; However, regardless of the used cell line it seems that the increase in the expression of HK2 in cancer cells compared to normal cells which have HK2 at a very low level, is a serious obstacle in anti-cancer therapy and efforts to find the effective inhibitors of this enzyme should be intensified.  相似文献   
28.
The stellarator Wendelstein 7-X is under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald. Its superconducting coil system is fixed by a massive structure. During machine operation the coils exert high forces and moments against each other and the central support structure (CSS). Therefore, the detailed analysis of the coil to CSS connections, the so-called central support elements (CSE), is a critical item. The major details of the design have been frozen; nevertheless, there is still need for detailed analysis of the CSEs due to assembly issues, and later on for exploring operational limits of the machine. These analyses have to be performed quickly, reliably, and shall provide results in a standardized form to enable timely responses to the assembly team. Special numerical tools – finite element (FE) parametric models of CSEs – have been developed for the purpose of such analyses. In the models, the geometry, material properties, contact conditions, loads as well as results presentation are defined in a parametric way. The use of the developed models for the definition of the final weld parameters, bolt preloads, assessment of acceptable tolerances, and optimal positions of the CSE-wedges before welding is also discussed.  相似文献   
29.
Lysozyme (N-acetyl-muramyl-hydrolase E.C. 3.2.1.17) is a low-molecular enzyme (14,400 Da) found in body secretions, systemic fluids and tissues of humans and animals. Antibacterial activity of lysozyme monomer is limited first of all to Gram-positive bacteria, which is connected with the structure of the cell wall. This enzyme catalyzes hydrolysis of β-glycoside bonds (1–4), releasing N-acetylglucosamine and N-acetylmuramic acid. The spectrum of antibacterial activity of lysozyme may be extended thanks to modifications of the enzyme. The aim of the study was to assess antibacterial activity, hydrolytic activity and surface hydrophobicity of different forms of lysozyme. Chemical and thermo-chemical modification of lysozyme was performed, and the antibacterial action of lysozyme monomer and modified preparations were compared. It was found that in comparison with monomer and the control, all modified preparations exhibit effective action against Gram (−) bacteria Pseudomonas fluorescens. A particularly effective action was found in case of lysozyme subjected to thermo-chemical modification, which was characterized by the highest proportion of oligomeric forms and the highest hydrophobicity.  相似文献   
30.
The extreme conditions of high pressure and shear imposed in a lubricated sliding contact could influence tribochemical reactions that could occur over long sliding distances and time scales, possibly leading to changes in both friction and film thickness. Experiments conducted with 12 plant oils reveal for the first time, that thin lubricating films of some plant oils can grow to thicknesses much greater than what is predicted from either elastohydrodyamic theory or their adsorbed molecular heights. Some films grew as much as 25 times in thickness (unrefined canola oil), while others remained roughly unchanged (flaxseed and olive oil), or grew slightly and then collapsed during the test (safflower oil). The absence of a loss in film thickness and the viscoelastic-like behavior of the film when speeds are reduced to zero, support the view that polymerization could be the main mechanism of film growth. However, the lack of correlation between the degree of unsaturation and the film growth rate suggests that other mechanisms could also be at work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号