首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   7篇
电工技术   2篇
综合类   2篇
化学工业   25篇
机械仪表   4篇
建筑科学   5篇
矿业工程   2篇
能源动力   31篇
轻工业   2篇
石油天然气   3篇
无线电   17篇
一般工业技术   16篇
冶金工业   1篇
自动化技术   36篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   7篇
  2018年   13篇
  2017年   15篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   19篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
排序方式: 共有146条查询结果,搜索用时 46 毫秒
141.
142.
The aim of this research was to investigate the sorption characteristics of polyaniline coated on sawdust (PAn/SD) for the removal of Cr(VI) ions from aqueous solutions. The sorption of Cr(VI) ions was carried out by the batch method. Characterization of PAn/SD was done by FTIR and SEM. The optimum conditions of sorption were found to be a PAn/SD dose of 0.6 g in 100 mL of Cr(VI) solution (50 mg/L), a contact time of 20 min, pH 2, and a temperature of 20°C, Increased temperature had a negative effect on the removal efficiency. Three equations, that is Morris–Weber, Lagergren, and pseudo‐second‐order, were tested to track the kinetics of the removal process. The kinetic data indicated that the adsorption process was described by the Morris–Weber equation. The Langmuir, Freundlich, and Dubinin–Radushkevick models were used with sorption data to estimate sorption capacity, intensity, and energy. The data were fitted with the Freundlich model. The thermodynamic parameters ΔH, ΔS, and ΔG were evaluated. They showed that the adsorption of Cr(VI) onto PAn/SD was feasible, spontaneous, and exothermic under the studied conditions. For desorption of Cr(VI) adsorbed onto PAn/SD, aqueous NaOH was used; with it, 85% of the adsorbed Cr(VI) could be desorbed. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   
143.
A new method of estimating lower limbs orientations using a combination of accelerometers and gyroscopes is presented. The model is based on estimating the accelerations of ankle and knee joints by placing virtual sensors at the centers of rotation. The proposed technique considers human locomotion and biomechanical constraints, and provides a solution to fusing the data of gyroscopes and accelerometers that yields stable and drift-free estimates of segment orientation. The method was validated by measuring lower limb motions of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (Shank: rms = 1.0, Thigh: rms = 1.6 degrees) and excellent correlation coefficients (Shank: r = 0.999, Thigh: r = 0.998). Technically, the proposed ambulatory system is portable, easily mountable, and can be used for long-term monitoring without hindrance to natural activities. Finally, a gait analysis tool was designed to visualize the motion data as synthetic skeletons performing the same actions as the subjects.  相似文献   
144.
The present research, as a part of the OTM materials development and testing effort, examines the combined effect of the Cr: Fe ratio (7:3, 8:2 and 9:1) and oxygen partial pressure (PO2) on the densification, microstructural development, and chemical stability of lanthanum chromite (La0.8Sr0.2)0.95Cr1-xFexO3 (LSCrF) for application in oxygen transport membrane and solid oxide fuel cell electrode. While highest density of 96.3 (±0.5) % is achieved for LSCrF with Cr: Fe ratio of 7:3 at 1400 °C and PO2 ~ 10?10 atm., the relative density decreases with increase in Cr: Fe ratio and PO2. LSCrF perovskite stability increases with increase in Cr: Fe ratio in reducing gas atmosphere. LSCrF (7:3) dissociates into FeOx and Fe1+xCr2-xO4 under reducing gas atmosphere (Ar-3%H2-3%H2O). LSCrF (9:1) perovskite does not show any evidence of second phase (FeOx and Fe1+xCr2-xO4) formation with decrease in PO2 unlike LSCrF (7:3 and 8:2). Defect chemistry and mechanism for FeOx and Fe1+x Cr2?x O4 formation in reducing atmosphere is described. LSCrF decomposition and the formation of the secondary phases are in agreement with the thermodynamic simulation results obtained with the La-Sr-Cr-Fe-O thermodynamic database.  相似文献   
145.
In this paper, we have developed an integrative method for checking the stability of linear time-invariant (LTI) systems as well as nonlinear continuous-time ones. In our method, we first apply the iterative Faddeev–Leverrier algorithm to obtain the characteristic polynomial of the LTI system. Subsequently, the associated Hermite-Fujiwara matrix will be evaluated by a particularly efficient technique for the calculation of the Bézoutian matrices. The positive-definiteness of the Hermite-Fujiwara form, as the stability criterion, is next tested by performing the Cholesky decomposition. Our method is extended to assess the local stability of nonlinear continuous-time systems with the help of the Jacobian matrix concept. The proposed method is demonstrated to approximately be 2.2 times faster than the classical Hurwitz algorithm in average, at least for matrices with dimensions less than 40, according to a performed central processing unit (CPU) time analysis. For the sake of illustration, four numerical examples are given, including dynamical models for a real-world hydrolysis reactor and a well-mixed bioreactor.  相似文献   
146.
Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号