首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
化学工业   9篇
金属工艺   1篇
机械仪表   3篇
能源动力   7篇
轻工业   3篇
石油天然气   1篇
无线电   15篇
一般工业技术   16篇
冶金工业   1篇
自动化技术   13篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2001年   5篇
  1997年   1篇
  1986年   1篇
排序方式: 共有69条查询结果,搜索用时 265 毫秒
31.
NixMg6?xAl1.8Ce0.2 (with 0 ≤ x ≤ 6) mixed oxides catalysts were prepared by hydrotalcite route. All the oxides were calcined at 800 °C and characterized by different physico-chemical methods. The catalysts are then reduced before their use in the steam reforming of toluene. The XRD and TG/DTA confirmed the formation of the hydrotalcite structure for the non-calcined samples. The N2 adsorption/desorption results revealed that all catalysts correspond to mesoporous materials. The study by temperature programmed reduction (H2-TPR) showed that the reducibility of the catalysts is influenced by the nickel content. The CO2-TPD results showed that the catalyst with high magnesium content present the highest basicity. The Ni2Mg4Al1.8Ce0.2 shows the best toluene conversion among all the catalysts and it was then compared to a non-promoted catalyst. The spent catalysts were characterized by TPO, TG/DTA and XRD and they didn't reveal any coke formation.  相似文献   
32.
The performances of multimedia applications built on wireless systems depend on bandwidth availability that might heavily affect the quality of service. The IEEE 802.11 standards do not provide performed mechanism for bandwidth management through data load distribution among different APs of the network. Then, an AP can be heavily overloaded causing throughput degradation.  相似文献   
33.
This paper studies the response of carbon fiber polymer matrix composites subjected to DC electric currents. A new fully automated experimental setup that enables one to measure electric field characteristics (current, voltage, resistance) and temperature at the surface of electrified composites in real time has been developed. The experimental procedure ensured a low contact resistance between the composite and electrodes and low resistance heating. An extensive experimental study on the electrical characterization of AS4/3501-6 and IM7/977-2 carbon fiber polymer composites of different lay-up and thickness has been conducted. The effect of the resistive heating was studied using experimental analysis as well as the finite element modeling.  相似文献   
34.
This two-part-paper proposes a higher order composite beam theory that can be viewed as an extension of Saint-Venant’s theory. Saint-Venant’s solution, is known to represent the exact 3D solution in the interior part of a beam, far from the end-sections where the boundary conditions are applied. The difference between these solutions contains the end-effects. The objective of the proposed theory is to capture a significant part of these end-effects in order to predict the 3D-stresses in a larger interior-part of the beam, and therefore better describe its structural behavior. Based on a kinematics built from the exact form of Saint-Venant displacement, the present theory is rigorously derived for the case of symmetric cross section made of orthotropic materials. Closed-form expressions are obtained for the stiffness matrix of the structural behavior and for the 3D-stresses. Easy to compare to those of Saint-Venant, these results highlight the contribution of this approach. Part-I is devoted to the theoretical developments and part-II illustrates the predictive capability of this theory through the analysis of tip loaded cantilever beams, focusing the built-in effects influence on the structural behavior of the beam.  相似文献   
35.
The structural, elastic, and thermodynamic properties of the cubic anti-perovskite $\hbox {RBRh}_{3}$ (R = Sm, Eu, Gd, and Tb) compounds have been investigated using first principles full-potential augmented-plane wave plus local orbitals (FP-APW+lo) method with the generalized gradient approximation. The ground-state quantities such as the lattice parameter, bulk modulus, and its pressure derivative, as well as elastic constants are estimated. Computed equilibrium lattice constants agree well with the available experimental data. The full set of first-order elastic constants and their pressure dependence, which have not been calculated or measured yet, have been determined. The elastic moduli increase linearly with increasing pressure and satisfy the generalized elastic stability criteria for cubic crystals under hydrostatic pressure. The shear modulus, Young’s modulus, and Poisson’s ratio are calculated for ideal polycrystalline $\hbox {RBRh}_{3}$ aggregates. The Debye temperature is estimated from the average sound velocity. From the elastic parameter behavior, it is inferred that cubic anti-perovskites $\hbox {RBRh}_{3}$ are ductile in nature and that the bonding is predominantly of an ionic nature. Following the quasi-harmonic Debye model, the temperature effect on the lattice constant, bulk modulus, heat capacity, and Debye temperature is calculated reflecting the anharmonic phonon effects.  相似文献   
36.
Elastic, thermodynamic, electronic, and magnetic properties in the cubic antiperovskite InNCe $_{3}$ 3 compound are derived from the full-potential linear muffin-tin orbital method. From the computed elastic constants, theoretical values of Young’s modulus, the shear modulus, Poisson’s ratio, Lamé’s coefficients, sound velocities, and the Debye temperature are evaluated. Analysis of the ratio between the bulk modulus and the shear modulus shows that InNCe $_{3}$ 3 is brittle in nature. The variations of elastic constants with pressure indicate that this compound possesses higher mechanical stability in the pressure range from 0 to 40 GPa. The electronic and magnetic properties of this compound are calculated by adding the Coulomb interaction $U$ U to improve the results.  相似文献   
37.
This work presents an analytical and numerical investigation of the heat transfer problem of turbulent flow under forced convection in a buried co-axial exchanger. A hybrid model consisting of a finite element method at the boundary (BEM) for the heat transfer problem on the boundary, and a finite volume method (FVM) to solve the turbulent flow inside solves this complicated problem. The development of the BEM method is based on Green's functions theory. The mathematical model employed makes a scientific contribution to a similar practical situation. The results can be of great interest for industrial processes requiring the estimation of the heating time necessary to obtain steady states. Essentially, the axial evolution of the heat transfer coefficient versus Reynolds number and transfer duration is treated here. The temperature field and the heat flux density at the wall are also investigated.  相似文献   
38.
Embedded digital signal processing (DSP) systems are usually associated with real time constraints and/or high data rates such that fully software implementations are often not satisfactory. In that case, mixed hardware/software implementations are to be investigated. This paper presents the design of a HW/SW G.729 voice decoder dedicated to embedded systems. The decoder has been built around, on the one hand a reconfigurable digital circuit (FPGA) to achieve the so called IP hardware part—the autocorrelation computation—using a linear systolic array, and on the other hand a digital signal processor (DSP) for the remainder of the algorithm. Apart such an implementation is typically driven by the use of reusable component (IP) it is of great interest for new G729-based applications such as Voice over IP (VoIP) for example. It results in an overall reduction of the execution time per frame. Another interesting point is the design of a parameterizable autocorrelation block which can be useful for a wide range of applications such as GSM 13 Kbit/s, APC 9.6 Kbit/s and G723 6.3 Kbit/s and 5.3 Kbit/s. In the G729 context and using a V50 Virtex FPGA, the execution time of this function is 10 times faster than a TMS320C6201 DSP implementation. Fatma Sayadi is Ph.D. student at Faculty of Sciences, Monastir, Tunisia in collaboration with the LESTER Laboratory, University de Bretagne Sud, Lorient, France. She is a member of Laboratory of Electronics and Micro-Electronics. His researches interest, the implementation of Digital Signal, high level design using VHDL language, Hardware/Software Co-design. Emmanuel Casseau received his Ph.D Degree in Electrical Engineering in 1994. He is currently an Associate Professor in the Electronic Department at the University de Bretagne Sud, Lorient, France. He is also in charge of the IP project of the Lester Lab., University de Bretagne Sud. His research interests include system design, high-level synthesis, virtual components and SoCs. Mohamed Atri born in 1971, received his Ph.D. Degree in Micro-electronics from the Science Faculty of Monastir in 2001. He is currently a member of the Laboratory of Electronics & Micro-electronics. His research includes Circuit and System Design, Network Communication, IPs and SoCs. Mehrez Marzougui received the B.Sc. degree from University of Science and Technology (electronic option), Monastir, Tunisia, and the M.Sc. degree in electronic from the same university in 1996 and 1998 respectively. Since 1998, he has been a Ph.D. candidate in Electronic and Micro-electronic laboratory at the University of Sciences and Technology, Monastir, Tunisia. His research interests include hardware/software co-verification and high-level synthesis. Rached Tourki was born in 1948. He received the B.S. degree in Physics (Electronics option) from Tunis University, in 1970; the M.S. and the Doctorat de 3eme cycle in Electronics from Institut d'Electronique d'Orsay, Paris-south University in 1971 and 1973 respectively. From 1973 to 1974 he served as microelectronics engineer in Thomson-CSF. He received the Doctorat d'etat in Physics from Nice University in 1979. Since this date he has been professor in Microelectronics and Microprocessors with the physics department, Faculte des Sciences de Monastir. Eric Martin born in 1961, is a Full Professor at the University of South Brittany in Lorient, France. His interest includes the implementation of Digital Signal and Image Processing and high-level design methods for dedicated circuits.  相似文献   
39.
Dependability requirements must be considered from the beginning when designing safety-critical systems. Therefore, testing should even be considered earlier, intertwined with the design process. The process of designing for better testability is called design for testability (DfT). This article presents two designs for testability and fault diagnosis techniques using a new design analogue checker circuit in order to improve the testability and the diagnosability of nano-CMOS (complementary metal oxide semiconductor) analogue circuits used in safety-critical applications based on the system-on-chip (SoC) approach design. The testing techniques presented in this work can be done during and after the system fabrication. The checker is implemented in full-custom 65 nm Complementary metal–oxide–semiconductor (CMOS) technology with low supply voltage and small-size capabilities. SPICE simulations of the post-layout extracted CMOS checker, which include all parasitic, are used to validate the technique and demonstrate the acceptable electrical behaviour of the checker.  相似文献   
40.
The paper presents a new antenna network subsystem architecture developed for application on board wireless communication subsystem. Founded research work results demonstrate the success of mathematical modeling and simulation of the proposed Icosahedrons Microstrip Antenna Network Architecture. Antenna elements are simulated, prototyped and tested. The Icosahedrons Microstrip Antenna Network is developed to meet the visibility requirements during inter small USS satellite radio communications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号