首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   16篇
  国内免费   4篇
电工技术   5篇
化学工业   82篇
机械仪表   2篇
建筑科学   1篇
能源动力   1篇
轻工业   21篇
水利工程   5篇
无线电   17篇
一般工业技术   55篇
冶金工业   2篇
自动化技术   23篇
  2024年   2篇
  2023年   10篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   12篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   24篇
  2012年   11篇
  2011年   17篇
  2010年   5篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1981年   3篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有214条查询结果,搜索用时 265 毫秒
111.
本文研究了 BK-10玻璃纤维增强聚甲基丙烯酸甲酯和聚碳酸酯两种热塑性有机基复合材料中纤维与基体界面强度的测量、控制及其对复合材料性能的影响。用有机硅烷耦联剂涂覆纤维表面可以提高纤维与基体的界面强度并相应提高复合材料的力学性能。实验发现四种基体纤维界面破坏形式分别存在于界面强度强和弱的韧性和脆性基体复合材料体系中。选用折光率相匹配的基体和纤维,适当控制制备工艺可以制备出光学透明的复合材料。  相似文献   
112.
The effect of an initial coarsening step (50-200 h at 800°C) on the subsequent densification and microstructural evolution of high–quality compacts of undoped and MgO–doped Al2O3 has been investigated during fast–firing (5 min at 1750°C) and during constant–heating–rate sintering (4°C/min to 1450°C). In constant–heating–rate sintering of both the undoped and MgO–doped Al2O3, a refinement of the microstructure has been achieved for the compact subjected to the coarsening step. A combination of the coarsening step and MgO doping produces the most significant refinement of the microstructure. In fast–firing of the MgO–doped Al2O3, the coarsening step produces a measurable increase in the density and a small refinement of the grain size, when compared with similar compacts fast–fired conventionally (i.e., without the coarsening step). This result indicates that the accepted view of the deleterious role of coarsening in the sintering of real powder compacts must be reexamined. Although extensive coarsening after the onset of densification must be reduced for the achievement of high density, limited coarsening prior to densification is beneficial for subsequent sintering.  相似文献   
113.
The effect of processing and material parameters on the sintering and coarsening of model composites consisting of a fine-grained ZnO matrix and coarse, rigid, inert particulate inclusions of ZrO2 was investigated. The green composites were formed by two methods: (i) mixing the matrix and inclusion powders in a ball-mill followed by die-pressing and (ii) slip casting. For both forming methods, the inclusions caused a significant reduction in the density and the grain size of the composite matrix but had almost no effect on the grain size vs density relationship. The effects of inclusion volume fraction and sintering temperature were somewhat independent of the forming method. However, for the slip-cast composites, the effect of inclusion size was less severe and the packing of the matrix phase immediately surrounding the inclusion showed some improvement. The sintering kinetics and microstructural observations indicated that two main factors controlled the sintering of these composites: (i) interactions between the randomly distributed inclusion particles that created a constraint on the matrix and (ii) the packing of the matrix, especially in regions immediately surrounding the inclusion particles.  相似文献   
114.
ZrB2-SiC composites were hot pressed at 2473 K (2200 °C) with graded amounts (5 to 20 wt pct) of SiC and the effect of the SiC addition on mechanical properties like hardness, fracture toughness, scratch and wear resistances, and thermal conductivity were studied. Addition of submicron-sized SiC particles in ZrBmatrices enhanced mechanical properties like hardness (15.6 to 19.1 GPa at 1 kgf), fracture toughness (2 to 3.6 MPa(m)1/2) by second phase dispersion toughening mechanism, and also improved scratch and wear resistances. Thermal conductivity of ZrB2-SiC (5 wt pct) composite was higher [121 to 93 W/m K from 373 K to 1273 K (100 °C to 1000 °C)] and decreased slowly upto 1273 K (1000 °C) in comparison to monolithic ZrBproviding better resistance to thermal fluctuation of the composite and improved service life in UHTC applications. At higher loading of SiC (15 wt pct and above), increased thermal barrier at the grain boundaries probably reduced the thermal conductivity of the composite.  相似文献   
115.
Polymer–ceramic composites were prepared using poly(dimethylsiloxane) as base matrix and normal as well as heat‐treated titania as fillers. Dielectric and mechanical properties of the composites were measured and found that dielectric constant of the composites was increased dramatically with the addition of filler, whereas resistivity was decreased. Hardness and modulus were found to increase but tensile strength, % elongation at break, and tear strength were decreased with the filler loading. Neat titania contains some moisture (physisorbed and chemisorbed) as revealed from thermogravimetric analysis. Both electrical and mechanical properties of the composites were affected by filler heat treatment. Further, untreated titania contains Ti3+ and Ti4+, which on heat treatment, increases the concentration of Ti4+, as a result electrical properties were affected. Filler dispersion in the composites was studied by field emission scanning electron microscopy and high resolution transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
116.
Polyaniline (PANI)‐Ag nanocomposites were synthesized by in situ chemical polymerization approach using ammonium persulfate and silver nitrate as oxidant. Characterizations of nanocomposites were done by ultraviolet–visible ( UV–vis), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). UV–vis, XRD and FTIR analysis established the formation of PANI/Ag nanocomposites and face‐centered‐cubic phase of silver. PANInanofibers were of average diameter ~ 30 nm and several micrometers in length. Morphological analysis showed that the spherical‐shaped silver nanoparticles decorate the surface of PANI nanofibers. Silver nanoparticles of average diameter ~ 5–10 nm were observed on the TEM images for the PANI‐Ag nanocomposites. Such type of PANI‐Ag nanocomposites can be used as bistable switches as well as memory devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
117.
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.  相似文献   
118.
Nanotechnology has potential to offer solutions to problems facing the developing world. Here, we demonstrate the efficacy of an anodic multiwalled carbon nanotube (MWNT) microfilter toward the removal and inactivation of viruses (MS2) and bacteria (E. coli). In the absence of electrolysis, the MWNT filter is effective for complete removal of bacteria by sieving and multilog removal of viruses by depth-filtration. Concomitant electrolysis during filtration results in significantly increased inactivation of influent bacteria and viruses. At applied potentials of 2 and 3 V, the electrochemical MWNT filter reduced the number of bacteria and viruses in the effluent to below the limit of detection. Application of 2 and 3 V for 30 s postfiltration inactivated >75% of the sieved bacteria and >99.6% of the adsorbed viruses. Electrolyte concentration and composition had no correlation to electrochemical inactivation consistent with a direct oxidation mechanism at the MWNT filter surface. Potential dependent dye oxidation and E. coli morphological changes also support a direct oxidation mechanism. Advantages of the electrochemical MWNT filter for pathogen removal and inactivation and potential for point-of-use drinking water treatment are discussed.  相似文献   
119.
Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号