首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   43篇
电工技术   24篇
化学工业   75篇
金属工艺   17篇
机械仪表   22篇
建筑科学   28篇
能源动力   24篇
轻工业   20篇
水利工程   2篇
石油天然气   5篇
无线电   108篇
一般工业技术   166篇
冶金工业   94篇
原子能技术   3篇
自动化技术   80篇
  2023年   5篇
  2022年   2篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   28篇
  2017年   13篇
  2016年   17篇
  2015年   15篇
  2014年   9篇
  2013年   25篇
  2012年   26篇
  2011年   32篇
  2010年   34篇
  2009年   24篇
  2008年   24篇
  2007年   29篇
  2006年   27篇
  2005年   21篇
  2004年   25篇
  2003年   19篇
  2002年   14篇
  2001年   12篇
  2000年   18篇
  1999年   19篇
  1998年   34篇
  1997年   25篇
  1996年   16篇
  1995年   12篇
  1994年   8篇
  1993年   11篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1981年   4篇
  1976年   12篇
  1970年   1篇
  1968年   4篇
  1964年   1篇
  1963年   1篇
  1959年   3篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有668条查询结果,搜索用时 31 毫秒
641.
Reactions at the refractory/melt interface during ingot casting of Ni‐ and Ni‐Fe‐alloys were studied. The casts were performed using different alumino‐silicate bricks as refractory materials. Samples taken from the casting channel before and after casting were investigated using light and scanning electron microscopy with XPS. Thermodynamic calculations were performed with FactSage and the results were compared with the results from industrial tests. After the melt has infiltrated the surface layer of the bricks, refractory corrosion starts with an attack of Mn and Mg of the melt on SiO2 and Fe2O3 of the refractory bonding matrix. Despite the presence of elements with higher oxygen affinity in the melt, low‐melting alumino‐silicate phases are predominantly built by the reaction with Mn and Mg. In a second step this liquid phase either traps non‐metallic inclusions from the melt or, at higher contents of Zr, Ti, Mg, Y etc. in the melt, causes massive reoxidation and inclusion formation. The refractory materials investigated show an increasing trend for reoxidation with an increasing amount of SiO2 in glassy phases of the refractory bonding matrix. By the use of a refractory material with higher mullite content in the bonding matrix or by use of alumina bricks a strong reoxidation of the melt and intense inclusion formation can be avoided. These observations are also valid for other alloys with higher contents of elements with high affinity to oxygen.  相似文献   
642.
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin‐like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long‐term use. Thermal‐radiation‐assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer‐scale format through a one‐step process. As a proof of concept, both long‐term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.  相似文献   
643.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials constructed from designer molecular building blocks that are linked and extended periodically via covalent bonds. Their high stability, open channels, and ease of functionalization suggest that they can function as a useful cathode material in reversible lithium batteries. Here, a COF constructed from hydrazone/hydrazide‐containing molecular units, which shows good CO2 sequestration properties, is reported. The COF is hybridized to Ru‐nanoparticle‐coated carbon nanotubes, and the composite is found to function as highly efficient cathode in a Li–CO2 battery. The robust 1D channels in the COF serve as CO2 and lithium‐ion‐diffusion channels and improve the kinetics of electrochemical reactions. The COF‐based Li–CO2 battery exhibits an ultrahigh capacity of 27 348 mAh g?1 at a current density of 200 mA g?1, and a low cut‐off overpotential of 1.24 V within a limiting capacity of 1000 mAh g?1. The rate performance of the battery is improved considerably with the use of the COF at the cathode, where the battery shows a slow decay of discharge voltage from a current density of 0.1 to 4 A g?1. The COF‐based battery runs for 200 cycles when discharged/charged at a high current density of 1 A g?1.  相似文献   
644.
Among van der Waals layered ferromagnets, monolayer vanadium diselenide (VSe2) stands out due to its robust ferromagnetism. However, the exfoliation of monolayer VSe2 is challenging, not least because the monolayer flake is extremely unstable in air. Using an electrochemical exfoliation approach with organic cations as the intercalants, monolayer 1T‐VSe2 flakes are successfully obtained from the bulk crystal at high yield. Thiol molecules are further introduced onto the VSe2 surface to passivate the exfoliated flakes, which improves the air stability of the flakes for subsequent characterizations. Room‐temperature ferromagnetism is confirmed on the exfoliated 2D VSe2 flakes using a superconducting quantum interference device (SQUID), X‐ray magnetic circular dichroism (XMCD), and magnetic force microscopy (MFM), where the monolayer flake displays the strongest ferromagnetic properties. Se vacancies, which can be ubiquitous in such materials, also contribute to the ferromagnetism of VSe2, although density functional theory (DFT) calculations show that such effect can be minimized by physisorbed oxygen molecules or covalently bound thiol molecules.  相似文献   
645.
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal–organic framework (MOF), named as Cu–MOF–CF, to realize improved electrochemical CO2RR performance, is reported. The Cu–MOF–CF shows suppression of CH4, great increase in C2H4 selectivity (48.6%), and partial current density of C2H4 at −1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu–MOF–CF for CO2RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu–MOF in situ for CF, and the enlarged active surface area by porous Cu–MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2RR.  相似文献   
646.
Ball burnishing, a plastic deformation process, is becoming more popular as a finishing operation. A literature survey and discussion on the effects of the various types of burnishing (normal, vibratory and ultrasonic) and related parameters—force, speed, feed-rate, lubrication, ball material and diameter, workpiece material, pre-machined roughness and frequency of oscillation—on the final surface roughness are presented. The effect is an interaction between the process parameters with burnishing force and feed-rate as the two most significant factors. A particular surface finish can be obtained by appropriate selection of the parameters  相似文献   
647.
Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen Argopsis friesiana consumed by the Subantarctic land snail Notodiscus hookeri. Besides profiling secondary metabolites in various lichen parts (apothecia, cephalodia, phyllocladia and fungal axis of the pseudopodetium), we investigated potentially beneficial resources that snails can utilize from the lichen (carbohydrates, amino acids, fatty acids, polysaccharides and total nitrogen). Notodiscus hookeri preferred cephalodia and algal layers, which had high contents of carbohydrates, nitrogen, or both. Apothecia were avoided, perhaps due to their low contents of sugars and polyols. Although pseudopodetia were characterized by high content of arabitol, they were also rich in medullary secondary compounds, which may explain why they were not consumed. Thus, the balance between nutrients (particularly nitrogen and polyols) and secondary metabolites appears to play a key role in the feeding preferences of this snail.  相似文献   
648.
Dynamical observation of bamboo-like carbon nanotube growth   总被引:1,自引:0,他引:1  
Lin M  Tan JP  Boothroyd C  Loh KP  Tok ES  Foo YL 《Nano letters》2007,7(8):2234-2238
The growth dynamics of bamboo-like multiwalled carbon nanotubes (BCNTs) via catalytic decomposition of C2H2 on Ni catalyst at 650 degrees C was observed in real time using an in situ ultrahigh vacuum transmission electron microscope. During BCNT growth, the shape of the catalyst particle changes constantly but remains metallic and crystalline. Graphene sheets (bamboo knots) within the nanotube preferentially nucleate on the multistep Ni-graphite edges at the point where the graphene joins the catalyst particle, where it is stabilized by both the graphene walls and the Ni catalyst surface. The growth of a complete inner graphene layer growth prior to contraction of the Ni catalyst particle due to restoring cohesive forces will result in a complete BCNT knot whereas partial growth of the inner wall will lead to an incomplete BCNT knot.  相似文献   
649.
The effectiveness of BrCl vs chlorine as a disinfectant of poliovirus was evaluated using a model contact chamber capable of automatically treating water at the rate of 4 gal min to simulate conditions at an operating wastewater treatment plant. The results show that in clean tap water both BrCl and chlorine are effective in inactivating poliovirus. However, in the presence of NH4Cl or 10% sewage effluent, BrCl was demonstrated to be superior to chlorine as a disinfectant of poliovirus.  相似文献   
650.
The anodized epitaxial graphene (EG) electrode demonstrates a high level of performance for electrochemical impedance as well as differential pulse voltammetry detection of immobilized DNA and free DNA, respectively, at solid-liquid interfaces. On the anodized EG surface, because of the presence of oxygen functionalities as well as π conjugated domains, the anchoring of the DNA probe can be achieved by either covalent grafting or noncovalent π-π stacking readily. The effect of different binding modes on the sensitivity of the impedimetric sensing was investigated. Equivalent circuit modeling shows that the sensitivity of EG to DNA hybridization is controlled by changes in the resistance of the molecular layer as well as the space charge layer. The linear dynamic detection range of EG for DNA oligonucleotides is in the range of 5.0 × 10(-14) to 1 × 10(-6) M. In addition, with the use of differential pulse voltammetry, single stranded DNA, fully complimentary DNA, as well as single nucleotide polymorphisms can be differentiated on anodized EG by monitoring the oxidation signals of individual nucleotide bases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号