首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   72篇
  国内免费   2篇
电工技术   3篇
综合类   2篇
化学工业   282篇
金属工艺   39篇
机械仪表   22篇
建筑科学   24篇
矿业工程   2篇
能源动力   41篇
轻工业   56篇
水利工程   5篇
石油天然气   2篇
无线电   70篇
一般工业技术   164篇
冶金工业   19篇
原子能技术   2篇
自动化技术   217篇
  2023年   4篇
  2022年   12篇
  2021年   90篇
  2020年   33篇
  2019年   41篇
  2018年   47篇
  2017年   25篇
  2016年   46篇
  2015年   33篇
  2014年   51篇
  2013年   74篇
  2012年   53篇
  2011年   61篇
  2010年   37篇
  2009年   51篇
  2008年   40篇
  2007年   36篇
  2006年   29篇
  2005年   20篇
  2004年   19篇
  2003年   20篇
  2002年   20篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1968年   1篇
排序方式: 共有950条查询结果,搜索用时 187 毫秒
801.
X-ray and neutron diffraction have been utilized to analyze the crystalline and electronic structure of lanthanum orthoniobate substituted by antimony. Using X-ray absorption spectroscopy and photoelectron spectroscopy, changes in the electronic structure of the material upon substitution have been analyzed. The structural transition temperature between fergusonite and scheelite phases for 30 mol% antimony substitution was found to be 15°C. Based on the neutron data, the oxygen nonstoichiometry was found to be relatively low. Moreover no influence on the position of the valence band maximum was observed. The influence of the protonation on the electronic structure of constituent oxides has been studied. Absorption data show that the incorporation of protonic defects into the lanthanum orthoniobate structure leads to changes in lanthanum electronic structure and a decrease in the density of unoccupied electronic states.  相似文献   
802.
InGaN layers with multiple quantum wells are widely used as active layers in advanced optoelectronic devices. In the present work, surface properties of some InGaN layers grown on GaN/sapphire substrates by plasma-assisted molecular beam epitaxy were examined. The total indium content incorporated in the crystalline lattice of In0.165Ga0.835N and In0.353Ga0.647N layers grown with a thickness of 70-200 nm was controlled by the growth temperature, and was determined from X-ray diffraction. Auger electron spectroscopy and X-ray photoelectron spectroscopy analysis reveal relatively smaller concentration of In within the surface area than in the bulk of the InGaN layers. The Ar+ XPS depth profile analysis shows the thick InGaN layers to be chemically homogeneous within an analytical area. To determine the electron inelastic mean free path in the layers within the 500-2000 eV range, relative elastic-peak electron spectroscopy measurements with Ni and Au standards were performed. The measured IMFPs were considerably larger than those predicted from the TPP-2M formula. The smallest root-mean-square-deviation and the mean percentage deviation of 9.9 Å and 44.5%, respectively, were found between EPES IMFP data and those predicted for the In0.353Ga0.647N layer with respect to the Au standard. This work provided the detailed compositional and chemical changes of InGaN thick layers, and could be useful in solving key issues associated with the growth of high-quality layer with much higher In content.  相似文献   
803.
804.
Y(BD4)3, which stores as much as 16.6 wt.% and 252 kg/m3 D, has been synthesized via high-energy disk milling. The thermal decomposition of Y(BD4)3 has been investigated using thermogravimetric and calorimetric analyses combined with the spectroscopic evolved gas analysis. Two major endothermic events corresponding to thermal decomposition could be distinguished in the DSC profile up to 400 °C at ca. 231 and 285 °C, preceded by a phase transition (at ca. 198 °C) from the low-temperature Pa-3 form to a high-temperature polymorph of Y(BD4)3 (F-43c). The high-temperature phase forming at the onset of thermal decomposition may be prepared quantitatively by heating of the low-temperature phase to ca. 216 °C followed by rapid quenching.Effects of isotope H→D substitution on various properties of yttrium borohydride have been analyzed. Y(BD4)3 constitutes a very efficient low-temperature source of deuterium gas on the laboratory scale.  相似文献   
805.
806.
Transcoding steganography (TranSteg) is a fairly new IP telephony steganographic method that functions by compressing overt (voice) data to make space for the steganogram by means of transcoding. It offers high steganographic bandwidth, retains good voice quality, and is generally harder to detect than other existing VoIP steganographic methods. In TranSteg, after the steganogram reaches the receiver, the hidden information is extracted, and the speech data is practically restored to what was originally sent. This is a huge advantage compared with other existing VoIP steganographic methods, where the hidden data can be extracted and removed, but the original data cannot be restored because it was previously erased due to a hidden data insertion process. In this paper, we address the issue of steganalysis of TranSteg. Various TranSteg scenarios and possibilities of warden(s) localization are analyzed with regards to the TranSteg detection. A novel steganalysis method based on Gaussian mixture models and mel-frequency cepstral coefficients was developed and tested for various overt/covert codec pairs in a single warden scenario with double transcoding. The proposed method allowed for efficient detection of some codec pairs (e.g., G.711/G.729), while some others remained more resistant to detection (e.g., iLBC/AMR).  相似文献   
807.
In this work, silica powders and transparent glass‐ceramic materials containing LaF3:Eu3+ nanocrystals were synthesized using the low‐temperature sol‐gel technique. Prepared samples were characterized by TG/DSC analysis as well as X‐ray diffraction and IR spectroscopy. The transformation from liquid sols toward bulk powders and xerogels was also examined and analyzed. The optical behavior of prepared Eu3+‐doped sol‐gel samples were evaluated based on photoluminescence excitation (PLE: λem = 611 nm) and emission (PL: λexc = 393 nm, λexc = 397 nm) spectra as well as luminescence decay analysis. The series of luminescence lines located within reddish‐orange spectral scope were registered and identified as the intra‐configurational 4f6‐4f6 transitions originated from Eu3+ optically active ions (5D0 → 7FJ, J = 0‐4). Moreover, the R/O‐ratio was also calculated to estimate the symmetry in local framework around Eu3+ ions. The luminescence spectra and double‐exponential character of decay curves recorded for fabricated nanocrystalline sol‐gel samples (τ1(5D0) = 2.07 ms, τ2(5D0) = 8.07 ms and τ1(5D0) = 0.79 ms, τ2(5D0) = 9.76 ms for powders and glass‐ceramics, respectively) indicated the successful migration of optically active Eu3+ ions from amorphous silica framework to low phonon energy LaF3 nanocrystal phase.  相似文献   
808.
ABSTRACT

A method for the synthesis of anion-exchange membranes by the grafting of ethylenediamine (EDA), diethylenetriamine (DETA) or pentaethylenehexamine (PEHA) onto poly(vinyl chloride) (PVC) film has been presented. The chemical structure was determined by means of Fourier Transform Infrared Spectroscopy (FTIR) and the membranes were characterized by ion-exchange capacity, chloride and nitrogen contents, water regain and surface energetics. The obtained membranes were evaluated in the Donnan dialysis (DD) of hexavalent chromium solutions. Among the membranes, those modified with EDA and DETA showed the best separation features: high flux and high recovery factor (RF). The highest degree of recovery was observed for membranes prepared by the casting of PVC solution in (THF), followed by grafting EDA.  相似文献   
809.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   
810.
Periodontitis is a prevalent chronic, destructive inflammatory disease affecting tooth‐supporting tissues in humans. Guided tissue regeneration strategies are widely utilized for periodontal tissue regeneration generally by using a periodontal membrane. The main role of these membranes is to establish a mechanical barrier that prevents the apical migration of the gingival epithelium and hence allowing the growth of periodontal ligament and bone tissue to selectively repopulate the root surface. Currently available membranes have limited bioactivity and regeneration potential. To address such challenges, an osteoconductive, antibacterial, and flexible poly(caprolactone) (PCL) composite membrane containing zinc oxide (ZnO) nanoparticles is developed. The membranes are fabricated through electrospinning of PCL and ZnO particles. The physical properties, mechanical characteristics, and in vitro degradation of the engineered membrane are studied in detail. Also, the osteoconductivity and antibacterial properties of the developed membrane are analyzed in vitro. Moreover, the functionality of the membrane is evaluated with a rat periodontal defect model. The results confirmed that the engineered membrane exerts both osteoconductive and antibacterial properties, demonstrating its great potential for periodontal tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号