首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13933篇
  免费   748篇
  国内免费   331篇
电工技术   119篇
综合类   436篇
化学工业   5148篇
金属工艺   1852篇
机械仪表   336篇
建筑科学   179篇
矿业工程   187篇
能源动力   1239篇
轻工业   458篇
水利工程   18篇
石油天然气   102篇
武器工业   77篇
无线电   807篇
一般工业技术   3092篇
冶金工业   569篇
原子能技术   84篇
自动化技术   309篇
  2024年   28篇
  2023年   667篇
  2022年   365篇
  2021年   341篇
  2020年   723篇
  2019年   704篇
  2018年   322篇
  2017年   695篇
  2016年   662篇
  2015年   756篇
  2014年   904篇
  2013年   999篇
  2012年   1203篇
  2011年   1017篇
  2010年   708篇
  2009年   914篇
  2008年   342篇
  2007年   913篇
  2006年   801篇
  2005年   300篇
  2004年   130篇
  2003年   177篇
  2002年   185篇
  2001年   167篇
  2000年   133篇
  1999年   126篇
  1998年   49篇
  1997年   19篇
  1996年   45篇
  1995年   45篇
  1994年   42篇
  1993年   32篇
  1992年   42篇
  1991年   37篇
  1990年   32篇
  1989年   30篇
  1988年   61篇
  1987年   140篇
  1986年   114篇
  1985年   40篇
  1976年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
3.
Recently, the graphite based heterogeneous photocatalysts has attained tremendous research attention in various environmental applications. Among them, the graphitic carbon nitride (g-C3N4) is categorized as a unique solar active particle with its outstanding intrinsic properties i.e., adequate band configuration, excellent light absorptivity and thermo-physical durability, which make it highly useful and reliable for revenue transformation and ecological concerns. Considering the intrinsic potential of g-C3N4 in photocatalysis, so far, no report has been done in literature for its extraordinary configuration, morphological characteristics and perspective tuning for said applications. To overcome this research gap, our primary emphasis of this review regarding photocatalysis is to provide layout as well as the advancement of visible-light-fueled materials as highly stabilized and extremely effective ones for pragmatic implementation. Thus, this existing comprehensive assessment conducts a systematic survey over visible light driven non-metal novel g-C3N4. The major advancement of this evaluation is the fabrication of well-designed nanosized g-C3N4 photocatalysts with unique configurable frameworks and compositions. Furthermore, alternative techniques in order to customize the analogue band configuration and noticeable cultivation such as metal (cation), nonmetal (anion) doping, worthy metal activating, and alloy initiation with certain semiconductors are discussed in detail. In addition to this, g-C3N4 photocatalytic functionalities towards photocatalytic hydrogen evolution, CO2 photoreduction, biological metal ions deterioration as well as bacterial sanitization are also presented and discussed in detail. Therefore, we believe that such a pivotal compact assessment can provide a roadmap in several perspectives on the currently underway obstacles in the innovation of effective g-C3N4 catalytic design processes. Moreover, this critical assessment will ultimately serve as a useful supplement in the research area of g-C3N4 nanosized photocatalysts and for the researchers working on its key aspects in diverse range of natural, chemistry, engineering and environmental applications.  相似文献   
4.
In this work, the longitudinal permeability of squarely packed dual-scale fiber preforms is studied theoretically. These fiber preforms are composed of aligned porous tows and the tows are tightly packed. The effective permeability is calculated as a parallel-like network of intra-tow permeability and inter-tow permeability, which are quantified by Darcy’s law and the inscribed radius between tows, respectively. The jump velocity at the interface between inter-tow fluids and porous tows is considered, as derived by substituting Beavers and Joseph’s correlation into Brinkman’s equation. We further examine the effects of intra-tow permeability on the effective permeability of the fibrous system with three interface conditions: (1) interface velocity = 0, (2) interface velocity = mean intra-tow velocity, and (3) interface velocity = jump velocity. The jump-velocity-based model is found to be closest to numerical data. The influence of the fiber volume fraction of tows on the effective permeability is also analyzed.  相似文献   
5.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
6.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
7.
TiO2 is a large bandgap chemically stable oxide useful for several applications that involve photo-activated processes, including photocatalysis, photovoltaics, photoelectrolysis, etc. However, the large band gap renders this material not a very efficient absorber of the solar spectrum. Various schemes of cation and anion doping have been utilized that reduce this deficiency to a certain extent. In this paper we present the results of N–C codoping of TiO2 thin films deposited by a reactive pulsed laser deposition technique. These films were compared for their optical and structural properties with undoped, N doped and C doped TiO2 films prepared by the same technique. While all samples contained polycrystalline anatase phase, varying N2 and CH4 partial pressures resulted in change in TiO2 lattice parameters due to codoping. X-ray diffraction high-resolution scans show the evidence of C incorporation into TiO2 lattice by 2θ shift in (101) reflections due to large ionic radius of C. N doping was confirmed by XPS analyses. Direct relationship between oxygen vacancies and doping concentration was established by the deconvolution of XPS peaks. Considerable bandgap reduction occurred that was measured by using UV–vis diffuse reflectance spectroscopy. Results show that reactive pulsed laser deposition is indeed a useful method for the synthesis of codoped TiO2 thin films as bandgap reduction of ~1.00 eV via N–C codoping was successfully achieved.  相似文献   
8.
Effects of ferrite materials as supports (CoFe2O4, NiFe2O4, and Fe3O4) on nano-TiO2 were elucidated by their use in the oxidation of methylene blue. These photocatalysts, which were synthesized by co-precipitation, were characterized by XRD, SEM, EDS and VSM. The crystalline phase of TiO2 onto magnetic MFe2O4 was formed by anatase and rutile. TiO2/CoFe2O4 exhibited the strongest magnetic property of the prepared catalysts, and the photocatalytic efficiencies followed the order TiO2/CoFe2O4 > TiO2/NiFe2O4 > TiO2/Fe3O4. MB decolorization was enhanced with the amount of TiO2 on the photocatalyst, and was moderately affected by the extent of structural distortion of ferrite supports.  相似文献   
9.
This paper presents an effective approach to achieve efficient electrical actuation and monitoring of shape recovery based on patterned Au electrodes on shape memory polymer (SMP). The electrically responsive shape recovery behavior was characterized and monitored by the evolution change in electrical resistance of patterned Au electrode. Both electrical actuation and temperature distribution in the SMP have been improved by optimizing the Au electrode patterns. The electrically actuated shape recovery behavior and temperature evolution during the actuation were monitored and characterized. The resistance changes could be used to detect beginning/finishing points of the shape recovery. Therefore, the Au electrode not only significantly enhances the electrical actuation performance to achieve a fast electrical actuation, but also enables the resistance signal to detect the free recovery process.  相似文献   
10.
Novel organic hybrid silver thiostannates [Hen]4[Ln(en)4]2[Ag6Sn6S20]·3en (Ln = Er, 1; Tm, 2; Yb, 3) were prepared by the reactions of Ln2O3, Ag, Sn and S in ethylenediamine (en) under solvothermal conditions. Six SnS4 tetrahedra and six AgS3 triangles are connected into the heterometallic sulfide cluster [Ag6Sn6S20]10  via edge-sharing. In the [Ag6Sn6S20]10  cluster, a hexanuclear Ag6S6 core is enclosed by two Sn3S10 fragments. The Ag6S6 core is the first As–S cluster stabilized by inorganic SnS4 ligands. In 13, all Ln3 + ions are in 8-fold coordination environments that involved four bidentate en ligands, forming bicapped trigonal prisms. Compounds 13 show well-defined absorption edges with band gaps in the range of 2.18–2.47 eV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号