首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7206篇
  免费   344篇
  国内免费   94篇
电工技术   61篇
综合类   49篇
化学工业   547篇
金属工艺   387篇
机械仪表   289篇
建筑科学   658篇
矿业工程   23篇
能源动力   502篇
轻工业   71篇
水利工程   18篇
石油天然气   9篇
武器工业   1篇
无线电   937篇
一般工业技术   1469篇
冶金工业   127篇
原子能技术   45篇
自动化技术   2451篇
  2024年   16篇
  2023年   194篇
  2022年   97篇
  2021年   177篇
  2020年   195篇
  2019年   164篇
  2018年   231篇
  2017年   359篇
  2016年   420篇
  2015年   361篇
  2014年   580篇
  2013年   531篇
  2012年   456篇
  2011年   459篇
  2010年   369篇
  2009年   407篇
  2008年   261篇
  2007年   345篇
  2006年   272篇
  2005年   219篇
  2004年   197篇
  2003年   207篇
  2002年   204篇
  2001年   147篇
  2000年   111篇
  1999年   130篇
  1998年   76篇
  1997年   66篇
  1996年   61篇
  1995年   32篇
  1994年   24篇
  1993年   26篇
  1992年   20篇
  1991年   17篇
  1990年   22篇
  1989年   19篇
  1988年   36篇
  1987年   62篇
  1986年   49篇
  1985年   22篇
  1984年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有7644条查询结果,搜索用时 31 毫秒
1.
2.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
3.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
4.
5.
A cathodic electrochemical method for the exfoliation of graphite to produce hydrogenated graphenic flakes is introduced. The resulting solutions consist of micrometer-sized and predominantly 1–4 layers thick hydrogenated graphenic flakes. In contrast to oxygenation, chemisorption of hydrogen avoids the formation of structural vacancy defects in the exfoliated flakes. Thermal desorption of hydrogen therefore results in graphenic flakes with a low defect density and consequently good electrical conductivity. Cathodic electrochemical exfoliation offers a remarkably simple and effective technique for the production of high quality graphene flakes and their hydrogenated relatives.  相似文献   
6.
《Ceramics International》2015,41(6):7366-7373
The accumulative damage behaviour of BN-coated Hi-Nicalon™ SiC fibre-reinforced SiC matrix composite was examined under tensile cyclic loading at room and elevated temperatures. The accumulative damage occurring during the cyclic loading was quantitatively characterised using the damage parameter obtained by the hysteresis loop curves. The damage parameter increased with increasing applied stress beyond the matrix cracking stress, and it subsequently retained a nearly constant value until just before fracture. Moreover, the dielectric constant, dielectric loss and loss tangent of the composite were measured before and after the fracture in the frequency range 1–1000 MHz. The dielectric properties had similar frequency dependency before and after the fracture. However, the dielectric constant, dielectric loss and loss tangent were lower in the post-fractured specimens than in the pristine ones. The reduction of the dielectric properties was associated with the accumulative damage stored in the specimens. In addition, the relationships between the dielectric properties and the damage parameter were described in detail.  相似文献   
7.
Three novel organic dyes adopting fully-fused coplanar heteroarene as the donor moieties end-capped with two cyanoacrylic acids as acceptors and anchoring groups have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). The photophysical and electrochemical properties of the novel dyes and the characteristics of the DSSCs based on the novel organic dyes were investigated. The incorporation of the coplanar cores with electron-donating N-bridges are beneficial for the better intramolecular charge transfer (ICT), giving these new dyes good light-harvesting capability. The LUMO energy levels of these coplanar heteroacene-based dyes are sufficiently high for the efficient electron injection to TiO2 upon photo-excitation, while the suitable HOMOs allow the regeneration of oxidized dyes with the electrolyte redox (I/I3). The structural features of the coplanar cores (penta vs. hexa heteroarene) as well as the alkyl substitutions play crucial roles in governing the physical properties and device performance. Among these three novel organic sensitizers, the EHTt dye composed of a fully fused hexa-arene core and less bulky N-alkyl groups caused the DSSC to show the best photovoltaic performance with an open-circuit voltage (VOC) of 0.58 V, a short-circuit photocurrent density (JSC) of 13.72 mA/cm2, and a fill factor (FF) of 0.69, yielding an overall power conversion efficiency (PCE) of 5.52% under AM 1.5G solar irradiation.  相似文献   
8.
We investigated the resistive switching characteristics of a polystyrene:ZnO–graphene quantum dots system and its potential application in a one diode-one resistor architecture of an organic memory cell. The log–log IV plot and the temperature-variable IV measurements revealed that the switching mechanism in a low-current state is closely related to thermally activated transport. The turn-on process was induced by a space-charge-limited current mechanism resulted from the ZnO–graphene quantum dots acting as charge trap sites, and charge transfer through filamentary path. The memory device with a diode presented a ∼103 ION/IOFF ratio, stable endurance cycles (102 cycles) and retention times (104 s), and uniform cell-to-cell switching. The one diode-one resistor architecture can effectively reduce cross-talk issue and realize a cross bar array as large as ∼3 kbit in the readout margin estimation. Furthermore, a specific word was encoded using the standard ASCII character code.  相似文献   
9.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   
10.
An Intermediate Bulk Container (IBC) was punctured during its handling, releasing oil onto soil at an environmentally-sensitive region of Australia. The telehandler did not pierce the plastic of the IBC directly (as was expected) but rather one of the tynes had caught on the underside of the metal base plate, despite numerous controls being in place at time of spill, revealing a previously unreported mechanism for a fluid spill from handling of petroleum hydrocarbons. The diverse investigation team used a root cause analysis (RCA) technique to identify the underlying cause: the inspection process was inadequate with contributing factors of not using a spotter and design of IBC did not anticipate conditions. Engineering controls were put in place as part of the change management process to help prevent spills from occurring from piercing from telehandler tynes on the current project site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号