首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   56篇
  国内免费   1篇
综合类   1篇
化学工业   76篇
金属工艺   5篇
机械仪表   2篇
矿业工程   2篇
能源动力   30篇
轻工业   5篇
石油天然气   1篇
无线电   42篇
一般工业技术   88篇
冶金工业   1篇
自动化技术   5篇
  2024年   2篇
  2023年   33篇
  2022年   10篇
  2021年   29篇
  2020年   25篇
  2019年   24篇
  2018年   39篇
  2017年   20篇
  2016年   11篇
  2015年   7篇
  2014年   12篇
  2013年   7篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1996年   2篇
  1993年   1篇
  1989年   1篇
  1987年   5篇
  1986年   3篇
排序方式: 共有258条查询结果,搜索用时 500 毫秒
1.
The electron transport layer (ETL) is a critical component in achieving high device performance and stability in organic solar cells. Conjugated polyelectrolytes (CPEs) have become an attractive alternative due to film-forming properties and ease of preparation. However, p-type CPEs generally exhibit poor charge mobility and conductivity, incorporation of electron-withdrawing units forming alternated D-A conjugated backbone can make up for these deficiencies. Herein, the ratio of electron withdrawing moieties are further increased and two poly(A1-alt-A2) typed PIIDNDI-Br and PDPPNDI-Br based on the combination of naphthalene diimide (NDI) with isoindigo (IID) or diketopyrrolopyrrole (DPP) via direct arylation polycondensation are synthesized. These CPEs possess excellent alcohol solubility, a suitable lowest unocuppied molecular orbital energy level, and work function tunability. Surprisingly, the incorporation of IID and DPP units generate distinct self-doping behaviors, which are confirmed by UV–vis absorption and ESR spectra. However, no matter doped or undoped, both CPEs present better charge-transporting properties and conductivity when utilized as ETLs. The PIIDNDI-Br and PDPPNDI-Br display good universal compatibility with the blend of PM6:Y6 and PM6:L8-BO, and PCEs of 18.32% and 18.36% are obtained, respectively, which also present excellent storage stability. In short, the combination of two different acceptors demonstrates an efficient strategy to design highly efficient ETLs for high performance photovoltaic devices.  相似文献   
2.
3.
One challenge for multimodal therapy is to develop appropriate multifunctional agents to meet the requirements of potential applications. Photodynamic therapy (PDT) is proven to be an effective way to treat cancers. Diverse polycations, such as ethylenediamine‐functionalized poly(glycidyl methacrylate) (PGED) with plentiful primary amines, secondary amines, and hydroxyl groups, demonstrate good gene transfection performances. Herein, a series of multifunctional cationic nanoparticles (PRP) consisting of photosensitizer cores and PGED shells are readily developed through simple dopamine‐involving processes for versatile bioapplications. A series of experiments demonstrates that PRP nanoparticles are able to effectively mediate gene delivery in different cell lines. PRP nanoparticles are further validated to possess remarkable capability of combined PDT and gene therapy for complementary tumor treatment. In addition, because of their high dispersities in biological matrix, the PRP nanoparticles can also be used for in vitro and in vivo imaging with minimal aggregation‐caused quenching. Therefore, such flexible nanoplatforms with photosensitizer cores and polycationic shells are very promising for multimodal tumor therapy with high efficacy.  相似文献   
4.
Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotential of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. This increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.
  相似文献   
5.
Atomic composition tuning and defect engineering are effective strategies toenhance the catalytic performance of multicomponent catalysts by improvingthe synergetic effect; however, it remains challenging to dramatically tune the active sites on multicomponent materials through simultaneous defect engineeringat the atomic scale because of the similarities of the local environment. Herein,using the oxygen evolution reaction (OER) as a probe reaction, we deliberatelyintroduced base-soluble Zn(II) or Al(III) sites into NiFe layered double hydroxides(LDHs), which are one of the best OER catalysts. Then, the Zn(II) or Al(III) siteswere selectively etched to create atomic M(II)/M(III) defects, which dramaticallyenhanced the OER activity. At a current density of 20 mA·cm?2, only 200 mV overpotential was required to generate M(II) defect-rich NiFe LDHs, which is the best NiFe-based OER catalyst reported to date. Density functional theory(DFT) calculations revealed that the creation of dangling Ni–Fe sites (i.e., unsaturated coordinated Ni–Fe sites) by defect engineering of a Ni–O–Fe site at the atomic scale efficiently lowers the Gibbs free energy of the oxygen evolutionprocess. This defect engineering strategy provides new insights into catalysts atthe atomic scale and should be beneficial for the design of a variety of catalysts.
  相似文献   
6.
Microfluidics and Nanofluidics - Single-cell nucleic acid analysis aims at discovering the genetic differences between individual cells which is well known as the cellular heterogeneity. This...  相似文献   
7.
We report an efficient one-step approach to reduce and functionalize graphene oxide (GO) during the in situ polymerization of phenol and formaldehyde. The hydrophilic and electrically insulating GO is converted to hydrophobic and electrically conductive graphene with phenol as the main reducing agent. Simultaneously, functionalization of GO is realized by the nucleophilic substitution reaction of the epoxide groups of GO with the hydroxyl groups of phenol in an alkali condition. Different from the insulating GO and phenol formaldehyde resin (PF) components, PF composites are electrically conductive due to the incidental reduction of GO during the in situ polymerization. The electrical conductivity of PF composite with 0.85 vol.% of GO is 0.20 S/m, nearly nine orders of magnitude higher than that of neat PF. Moreover, the efficient reduction and functionalization of GO endows the PF composites with high thermal stability and flexural properties. A striking increase in decomposition temperature is achieved with 2.3 vol.% of GO. The flexural strength and modulus of the PF composite with 1.7 vol.% GO are increased by 316.8% and 56.7%, respectively.  相似文献   
8.
9.
目的 研究提高丝网印刷柔性传感器电极的导电性,为提升柔性传感器的电学性能提供参考依据。方法 首先采用分子动力学(Molecular Dynamic,MD)模拟方法,建立在Wenzel模型下导电银浆团簇在不同粗糙因子下的对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)表面铺展的分子动力学模型,其次分别计算各体系下的结合能,用以表征不同体系下PET表面对导电银浆团簇结合能力,接下来通过丝网印刷实验的方法探究银浆与不同粗糙因子PET的结合能力对传感器电极的导电性的影响。结果 仿真结果表明,导电银浆团簇在不同粗糙因子的PET表面的铺展过程中会陷入粗糙表面的凹陷处,且导电银浆与基材的结合能随着PET粗糙因子的增加而增加。实验结果表明,使用不同粗糙因子的PET作为承印物能显著提升电极的导电性。相比于未处理的PET,随着粗糙因子的增加,导电线条的电导率逐渐升高,电阻率逐渐降低,方块电阻逐渐降低。电导率最大提升了77%,电阻率最大下降了43%,方块电阻最大下降了38%。结论 导电银浆在粗糙表面铺展的过程中会渗入基材的凹陷处,增加了吸附点位,使得银浆与基材的结合更加紧密...  相似文献   
10.
The Sherwood-Pigford model for absorption accompanied by instantaneous irreversible chemical reaction is an essentially discontinuous one, where a moving front across which concentration gradients suffer a discontinuity is assumed to exist. The case where the reaction is both instantaneous and irreversible is a doubly singular one. In this paper, a boundary-layer analysis is developed which shows that, for irreversible reactions, the Sherwood-Pigford model equations are approached asymptotically for arbitrary kinetics when an appropriate time scale of the reaction becomes sufficiently small. It is also shown that the same limit is approached for arbitrary stoichiometry in the case of instantaneous reactions when the ratio of the interface to the bulk concentration of volatile component becomes sufficiently large. Finally, a general estimate is obtained of the thickness of the reaction zone (which is assumed to be zero in the Sherwood-Pigford model) for the general case where the reaction is neither instantaneous nor irreversible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号